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ABSTRACT

The general problem treated is that of convective heat
transfer in a parallel plane passage with both laminar and
turbulent hydrodynamically fully established flow. With
the assumptions that the fluid has constant properties and
negligible viscous dissipation, internal energy generation,
and axial conduction, the governing differential energy
equation is solved for several basic wall boundary condi-
tions.. The resulting fundamental solutions can be super-
imposed to satisfy any wall temperature or heat flux
boundary condition.

The fundamental boundary condition sets, or cases, are
four in number. In each case the fluid and walls initially
have a uniform zero temperature; then, at the "thermal

entry," one of the following steps occurs:

1. The temperature at one wall is increased to unity,
that at the other wall being held at zero;

2. The heat flux at one wall is increased to a non-
zero constant, that at the other wall being held
at zero;

3. The temperature at one wall is increased to unity,
the heat flux at the other wall being held at zero;

4. The heat flux at one wall is increased to a non-
zero constant, the temperature at the other wall

being held at zero.

The solution of the four cases results in dimension-
less wall temperatures, wall heat fluxes, and fluid mean
temperatures; these are called "fundamental solutions,"
and their use in solving problems with arbitrary wall
boundary conditions is described. These fundamental solu-
tions are presented in tabular and graphical form for lami-

nar flow, and for turbulent flow with Pr = 0.70 and



Re = 20,000, 30,000, and 50,000, The case of Pr = 0.01
is also considered for the fully developed temperature pro-
file region.

The governing energy equation is reduced to two ordi-
nary differential equations by separation of wvariables.

One of these equations, together with its boundary condi-
tions, constitutes a problem of the Sturm-Liouville type,
and is solved by direct numerical integration. The result-
ing lower eigenvalues and constants are presented in tabular
form. The higher eigenvalues and constants are determined
by the WKBJ approximate solution and are also presented.

An integral solution is set forth for use in the immediate
vicinity of the thermal entry.

A facility for the experimental study of heat transfer
between air and a non-isothermal parallel plane passage is
described. Turbulent flow data gathered with the facility
are presented for several wall boundary conditions and are

compared with the theory predictions.

vi



TABLE OF CONTENTS
Acknowledgements
Abstract
Index to the Figures
Index to the Tables
Nomenclature
I. Introduction

I.A. The Problem
I.B. Objective
I.C. Summary
II. General Formulation of the Problem and the
Concept of the Fundamental Solutions
II.A. Discussion of the Problem
II.B. The Mathematical Formulation
II.C. The Fundamental Solutions
IT.D. The Use of the Fundamental Solutions
II.E. The General Nusselt Number Relations

III. Laminar Flow

III.A. Survey of Previous Studies

III.B. Mathematical Formulation and Method
of Solution

IIT.C. The Four Fundamental Solutions
III.D. The Nusselt Number Relations
III.E. Relations Valid at Small X
III.F. Relations Valid at Large X

III.G. Solution of the Sturm-Liouville
Equation

vii

iii

ix
xii

xiii

SWw N e

O N W W

18
22
22
26
37
52

55
66

72



IVv. Turbulent Flow

IV.A. Survey of Previous Studies

IV.B. Mathematical Formulation and Method
of Solution

IV.C. The Four Fundamental Solutions
IV.D. The Nusselt Number Relations
IV.E. Relations Valid at Small x
IV.F. Relations Valid at Large X

IV.G. Solution of the Sturm-Liouville
Equation

V. Experimental Work

V.A. Description of Apparatus

V.B. Comparison of Experimental and
Theoretical Results

VI. Conclusions

Appendices

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

References

Derivation of Expressions Useful
for Evaluating the Higher Eigen-
constants

Details of the Numerical Calcu-
lation of the Laminar Eigen-
functions

Details of the Numerical Calcu-
lation of the Turbulent Fully
Developed Temperature Profiles
and Eigenfunctions

Example of the Use of the Funda-
mental Solutions

Estimate of the Range of Validity
of the Turbulent Small x Solu-
tions

Experimental Uncertainty

Some Useful Constants

viii

96
926
97
120
138
138
149
156
179

179

199
206

208

208

214

220

237

242
247
249

250



Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

II.B.1.
II.D.1.

II.D.2.

ITITI.C.1.

IIT.C.2.

IIT.C.3.

ITr.C.4.

ITTI.D.1.

ITT.F.1.

ITIT.G.1.

IIT.G.2.

ITT.G.3.

IV.B.1.

IV.B.2.

Iv.B.3.

IV.B.4.

IV.B.5.

iv.B.6.

INDEX TO THE FIGURES

Parallel Planes Coordinate System

Illustration of a Step Wall
Temperature Distribution

Illustration of an Arbitrary wall
Temperature Distribution

Laminar Fundamental Solutions of
the First Kind

Laminar Fundamental Solutions of
the Second Kind

Laminar Fundamental Solutions of
the Third Kind

Laminar Fundamental Solutions of
the Fourth Kind

Laminar Nusselt Numbers for Uni-
form and Egual Wall Boundary
Conditions

Laminar Fully Developed Constant
Heat Flux Nusselt Number

The Eigenfunctions of the Laminar
Case One

The Eigenfunctions of the Laminar
Case Two

The Eigenfunctions of the Laminar
Cases Three and Four

Eddy Diffusivity for Momentum
Transfer

Parallel Planes Turbulent Flow
Friction Factor

Comparison of the Van Driest and
Deissler Eddy Diffusivity Expres-
sions Near a Wall

Parallel Planes Turbulent Veloc-
ity Profiles

The Jenkins Eddy Diffusivity
Ratio

Eddy Diffusivity Ratio Correction
Factor for Pr = 0.70

ix

14

14

46

47

48

49

53

71

91

92

93

101

103

104

106

108

110



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure

Figure

IvV.B.7.
IV.B.8.
IV.B.9.
Iv.c.l.
Iv.C.2.
Iv.C.3.
Iv.c.4.
Iv.F.1l.
V.A.1l.

V.A.2.
V.A.3.

V.A.4.
V.A.5.
V.A.6.

V.A.7.
V.A.8.

V.A.9.

V.A.lOf
V.A.11.

V.A.12.

V.B.1.

Turbulent Case One Fully Devel-
oped Solution Constants

Turbulent Case Two Fully Devel-
oped Solution Constants

Turbulent Case Four Fully
Developed Solution Constants

Turbulent Fundamental Solutions
of the First Kind for Pr.= 0.70

Turbulent Fundaméntal Solutions
of the Second Kind for Pr = 0.70

Turbulent Fundamental Solutions
of the Third Kind for Pr = 0.70

Turbulent Fundamental Solutions
of the PFPourth Kind for Pr = 0.70

Turbulent Fully Developed Nusselt
Numbers ‘

Parallel Plates In a Horizontal
Position for Polishing

Parallel Plate Assembly

The Test Section and Supporting
Structure

Exploded View of a Heated Cell
The Air System

Plenum Chamber and Nozzle
Assembly

The Steam-Water System

Detail of a Steam-Water Mixing
Section

Thermocouple and Heat Meter
Selector System

Thermocouple Circuit
Heat Meter Circuit
Controls and Instrumentation

Comparison of Experimental and
Theoretical Values, Re = 39,850

Comparison of Experimental and
Theoretical Values, Re = 57,700

Comparison of Experimental and
Theoretical Values, Re = 40,400

116

117

118

128

129

130

131

155

181
182

183
184
187

188
191

192

195
196
197
198

201

202

203



Figure V.B.4.
Figure V.B.5.

Figure D.1.

Comparison of Experimental and
Theoretical Values, Re = 57,000

Comparison of Experimental and
Theoretical Values, Re = 56,300

Example of the Use of the Funda-
mental Solutions

xi

204
205

241



Table
Table

Table

Table

Table

Table

Table

Table

Table

Table
Table

IIT.C.1.
III.D.1.

ITT.G.1.

Iv.B.1.

Iv.c.l.

Iv.c.2.

IV.C.3.

Iv.D.1.

Iv.G.1.

IV.G.2.
B.1.

INDEX TO THE TABLES

The Laminar Fundamental Solutions

Laminar Nusselt Numbers for Uni-
form and Equal Wall Boundary
Conditions .

Laminar Eigenvalues and Constants

Turbulent Fully Developed Solu-
tion Constants

The Turbulent Fundamental Solu-
tions for Pr = 0.70, Re = 20,000

The Turbulent Fundamental Solu-
tions for Pr =.0.70, Re = 30,000

The Turbulent Fundamental Solu-
tions for Pr = 0.70, Re = 50,000

Turbulent Nusselt Numbers for Uni-
form and Equal Wall Boundary
Conditions, Pr = 0.70

Turbulent Eigenvalues and Con-
stants for Pr = 0.70

Turbulent WKBJ Parameters

Comparison of the Laminar Eigen-
values Reported by Several
Investigators

xii

50
54
94
119
132
134

136

139

174
178

219



NOMENCLATURE

English letter symbols

A a constant in the eddy diffusivity for momentum
transfer expression, herein taken to be 26

cp specific heat at constant pressure, Btu/1b-°F

C a constant, defined where used

Cn eigenconstant

D, hydraulic diameter, here 4y0, ft

f a function, defined where used

£ friction factor, defined by (IV.B.9)

g(y) function used in the WKBJ approximation

g ? constant of proportionality in Newton's Second

¢ Law,(}b—ft/#—secg)_

G,H arbitrary constants

h convective heat-transfer coefficient, Btu/sec-ftZ-°F

h(y) variable used in the turbulent WKBJ approximation
and Appendix A, defined by (IV.G.3)

I incomplete gamma function

J Bessel function of the first kind

k thermal conductivity, Btu/sec-ftZ-°F/ft

K a constant in the eddy diffusivity for momentum
transfer expression, herein taken to be 0.4

Kh pormal%zing factor used in the Berry and de Prima
iterations

m mass flow rate, 1lb/sec

n outward normal coordinate from a wall, ft

xiii



Nu

Pr

X (x)

KON
o]

|

hDh
Nusselt number,

k
e
Prandtl number, A—EE
heat flux, Btu/sec-ft® (Note: " is positive

when energy flows from the wall to the fluid.)
radial length coordinate, ft

circular tube radius, ft

normalized circular tube radius

um
v

Reynolds number,

a temperature shape profile, see (IV.B.27)
temperature, °F
velocity in the x direction, ft/sec

mean fluid velocity, ft/sec

normalized velocity in the x direction, ﬁ;a
m

normalized velocity in the x direction, defined
by (IV.B.16)

weight function in the Sturm-Liouville equation

axial length coordinate, ft

X

DhRePr

normalized axial length coordinate,

function used in the separation of variables
transverse length coordinate, ft

parallel plane passage half-width, ft

normalized transverse length coordinate, gL
o

xiv



normalized transverse length coordinate, defined
by (iIv.B.8)

normalized parallel plane passage half-width,
defined by (IV.B.8)

eigenfunction, used in the separation of variables

normalized transverse length coordinate with origin
at the lower wall, 1 + y

Greek letter symbols

a

Of

thermal diffusivity, B%— , ft%/sec

p

a distance parameter, used in Appendix E only

parameter used in the turbulent WKBJ approximation,
defined by (IV.G.1l9)

gamma function
denotes incremental step of wall boundary condition

parameter used in the turbulent WKBJ approximation,
defined by (IV.G.15)

eddy diffusivity for heat transfer, ft®/sec
eddy diffusivity for momentum transfer, ft2/sec

normalized transverse leggth coordinate with origin
at the upper wall, 1 - vy

normalized transverse length coordinate with origin
at the lower wall, 1 + y

normalized transverse length coordinate with origin

at the upper wall, 1 -y

normalized temperature, defined for the four funda-
mental cases by (II.B.10, 11, 12, 13)

normalized temperature, 6 - efd

Xv



A eigenvalue

n

W viscosity, lb/sec-ft

Y kinematic viscosity, %-, ft2/sec

3 dummy normalized axial length coordinate

d similarity solution variable

p density, 1lb/ft®

o dummy variable

T shear stress, #/ft%

T, wall shear stress, #/ft®

® normalized heat flux, defined for the four funda-
mental cases by (II.B.10, 11, 12, 13)
phase shift in the WKBJ solutions
similarity solution function

M dummy variable, defined by (E.4)

Subscripts

e thermal entrance, x = 0

fd fully developed

i inner wall

m mixed mean

m summation index

n summation index

o outer wall

w wall, y = +1

xvi



I. INTRODUCTION

I. A. The Problem

The parallel planes geometry studied in this work is
a mathematical idealization of an often-encountered heat-
transfer surface geometry. It consists of two parallel
planes of arbitrary finite spacing, arbitrary length, and
infinite breadth, between which fluid flows in the length-
wise direction. The problem is a two-dimensional one, the
physical occurrences in each imaginary plane normal to the
breadth being identical.

The geometry is the limiting case of the circular
annular passage as the radius ratio approaches unity, and
of the rectangular passage as the aspect ratio becomes
large., It is because it represents a mathematically simple
approximation of these two physically realizable and prac-
tically important geometries that the parallel planes con-
figuration is worthy of study.

Examples of heat-transfer systems that often can be
represented by parallel planes include the nuclear power
reactor with parallel plate fuel elements and the parallel
fin extended surface heat exchanger. 1In the former case
one normally wishes to compute surface temperatures from
surface heat fluxes, while in the latter the reverse is
true. Often the thermal "boundary conditions" will differ
in magnitude at the two plates, and even vary in the flow
direction. Indeed, it is not difficult to envision a
situation in which the heat flux 'is known at one plate while
the temperature is specified at the other. Thus it is seen
that there are many possible heat-transfer problems perti-

nent to the parallel planes geometry.

I. B. Objective

The objective herein is to develop a simple and unified

calculation technique and numerical values for the design

1



engineer to solve parallel plane steady-state convective
heat-transfer problems of a wide variety of wall boundary
conditions for the case in which the fluid has constant
properties, a fully established velocity profile, and neg-
ligible viscous dissipation, internal energy generation,

and axial conduction.

I. C. Summary

The general technique for solving parallel planes con-
vective heat-transfer problems is developed in Section II.
Use is made of the "fundamental solution" concept proposed
by the author together with Reynolds, Lundberg, et al.*®
Numerical values of these fundamental solutions are calcu~-
lated in Section III for laminar flow, and in Section IV
for turbulent flow.

In Section V is reported experimental work conducted
to verify certain assumptions inherent in the turbulent flow
analysis.

Finally, conclusions are drawn from the analysis and
some suggested areas for further study are outlined in
Section VI. .

Numerical examples of the use of the methods developed

herein are to be found in Appendix D.



IT. - GENERAL FORMULATION:OF THE PROBLEM: AND
THE CONCEPT OF THE FUNDAMENTAL SOLUTIONS

II. A. Discussion of the Problem

As set forth in the Introduction, it is the purpose of
this study to develop solutions to problems of convective .
heat. transfer between a fluid and a parallel planes passage
for a wide variety of wall boundary conditions. Fortunately,
the differential equation describing the temperature profile
in the fluid is linear and homogeneous so it is,quite:unnec—'
essary to solve the problem in detail for each possible
boundary condition; indeed, this would be an impossible task.
since the number of possible boundary conditions is infinite.
Rather, it is necessary only to restrict attention to the
minimum number of boundary conditions required to construct
all other boundary conditions by superposition. For the
symmetric geometry of the parallel planes this minimum
number is four. These four "building block" problems will
be solved in detail in Sections III and IV and their solu-
tions will be called "fundamental solutions."

The remainder of this section will be devoted to the
development of the form of these fundamental solutions and
to a discussion of the superposition technique by which
these solutions can be used to solve the arbitrary wall

boundary condition problem.

II. B. The Mathematical Formulation

The energy equation for flow between parallel planes

is:

= [@ + ey %1%] =u g (II.B.1)
when the following restrictions are applied:

1. The velocity profile is fully established.



5.

‘The fluid transport properties and density are

constant.

Axial heat conduction, both molecular and eddy,
is negligible.

Viscous energy dissipation is negligible.
Internal fluid energy generation is negligible.

Conditions are invariant with time.

Nondimensionalizing, the following definitions are used!

y

K1

g-}}’— (see Fig. II.B.1) (II.B.2)
[}

A X =
= S RePr (Dh 4yo for the parallel

h

planes geometry) (Ir.B.3)

A a suitably normalized temperature to

be defined later (TI.B.4)

The coordinate system employed is defined in the figure

below.

[LLLLLL LS

entry section °© Ty
for establishing 4

velocity profile,
t =ty throughout

/777777777777

Figure II.B.1l. Parallel Planes Coordinate System



Equation (II.B.l) then becomes

—i{<1+-e—fipr>—a;9—}=u 98 (II.B.5)
3% | v 37 %% %

where u is the mean fluid velocity, defined as

+1
ALl S
u, =3 j' u dy
-1

As stated in the Introduction, attention is to be
focused on three general types of wall boundary conditions,
namely: (1) temperature specified at each wall, (2) heat
flux specified at each wall, and (3) temperature specified
at one wall and heat flux specified at the other. With this
aim in mind, the simplified boundary conditions listed below
will be dealt with first.

Case 1 Case 2
t(0,y) = ty t(0,y) = tg
t(x,1) = t, a" (x,1) = a (II.B.6,7)
t(x,-1) =ty q"(x,-1) =0

Case 3 Case 4
t(0,y) = ty t(0,y) = tg
t(x,1) = t, g"(x,1) = qa, (II1.B.8,9)
q"(x,-1) =0 t(X,-1) = t

e

Here tw’ q&, and te are not functions of distance.
A dimensionless temperature and temperature derivative in
the transverse direction will now be defined for each of

the four cases.



Case 1 Case 2

s ot % pl2) ot~ %
t -t D
w e nh
9% %
) (II.B.10,11)
(1) A 0 (1 (2) A 30 (2)
o R -y = 0% R -p i
Case 3 Case 4
(s) A B F () A £~ T
93=t—t e4=.__]_)___
w e n__l:l_
9 &
(1I1.B.12,13)
()Q_ 89(3) ()é 89(4)
@2 & - Dy 5 ¢ ¢ =2 - D S5

Here n denotes the outward normal from the nearest
wall. Note that n is not dimensionless, but has the units
of length, like vy. Recognizing that qy = - k(dt/on) the
above boundary conditions and definitions can be combined
to give the following conditions. (It should be noted that
throughout this study q" is taken as positive at a wall
when the heat transfer is from the wall to the fluid, regard-

less of the wall under consideration.)

Case 1 Case 2
() (0,%) =0 6¢2) (0,5 =0
(1) (= = (2) (= -1 = 36 (2) (II.B.
gl (x,1) =1 ®\2 (x,1) 1 =4 __a—i;——— 14,15)
(2)
9(1) (5_{,—1) =0 @(2)(}2,_1) =0 = -4 o8 2
oy



Case 3 Case 4

0() (0,3 = 0 6(¢) (0,7 =0
(=) = - (4) (= -4 = 36 (4) (II.B.
6 (X,l) =1 ) 4 (x,1) =1 4 -'—a—_}:;—— 16,17)
()
0(e) (z,21) =0 =-4292 o)z 1) =0

oy

II. C. The Fundamental Solutions

The differential Equation (II.B.5) taken with each of
the four sets of boundary conditions listed above specifies
the four fundamental problems or cases to be solved.. One
is usually interested in the ©6's or &'s (the tempera-
tures or heat fluxes) at a wall, and so the ©68's and ®'s

evaluated there will be referred to as fundamental solutions.

In fact, a double subscript notation will be employed to
specify these fundamental solutions, the first subscript
denoting the wall at which the solution applies and the
second denoting the wall at which the nonzero boundary con-
dition applies. Foxr example, Gii) will denote the non-
dimensionalized temperature at the inner wall for the funda-
mental case of the second kind with the nonzero boundary
condition specified at the outer wall. The inner wall-
outer wall notation is used here to be consistent with that
employed in the treatment of annular passages. Where
applicable, in the development to follow the outer wall will
be that at y = +1.

The mixed-mean fluid temperatures are also of interest,

and they will be denoted by the subscript m. For example,
9(2)
mo
temperature for the fundamental case of the second kind

will denote the non-dimensionalized mixed-mean fluid

with the nonzero boundary condition specified at the outer

wall. These mean temperatures will also be called



fundamental solutions. From energy considerations, the

mixed-mean temperature is given by

+a

eég) ='§%; j' .eék) u dy (II.C.1)

-1
where kX refers to the fundamental case, and j to the
wall at which the nonzero boundary.condition is applied.
Actually, for the parallel planes geometry emo = emi for
all four fundamental cases. Throughout this study when
only one i or o subscript is used it refers to the wall
at which the nonzero boundary condition is applied.

The fundamental solutions to be sought are listed .
below. Note that the laminar flow solutions will differ
from those for turbulent flow since the differential

Equation (II.B.5) assumes a different form.

Fundamental solutions of the first kind

o{1) = g(1)
ii fote) Note: o(1) _ g(1) _ 1
: ii 00
(1) _ (1)
Ooi %o o(2) = g(2) = ¢
io oi
Q(J_.) - Q(l)
mi mo

Fundamental solutions of the second kind

6(2) = 9(2)
i °0 Note: 0{2) = o2) =1
ii oo
(2) - 5(2)
Ooi b0 o(2) = 5(2) = ¢
io oi
g(2) = g(2) '
mi mo



Fundamental solutions of the third kind

a{e) = g2
11 [e]e)
ple) = pla)
ol 10
0 (8) =0 (3)
mi mo

o0

Note: 0(3) = g(2)
ii
ale) = ofe)
oi io

Fundamental solutions of the fourth kind

o{#) = gl
11 oo
ale) = gls)
ol 10
ple) = gla)
mi mo

IT. D. The Use of the Fundamental Solutions

Note: o{%) = ¢(4)
oo

ii
ole) = gl
ol 10

I
=

In the body of this study the above fundamental solu-

tions are determined for both laminar and turbulent flow.

In this section it will be assumed that they are already in

hand and their use will be demonstrated first for uniform

wall boundary conditions, and then for axially varying wall

boundary conditions.

1. Uniform wall boundary conditions

a. Temperature specified at each wall

Here the boundary conditions are

t(0,y) = te

t(x,1) t

WO

t(x,-1) = twi

(IT.D.1)



It is asserted that the solution to the problem speci-
fied by the differential Equation (II.B.l) together with

the above boundary conditions is

e@9) = o) & (b0 - t)+ 0 &D) (b - te) + to
(IT.D.2)

From Equations (II.B.l1, 10, 14) and (II.D.1l) it is seen
that Equation (II.D.2) satisfies both the differential
equation and the boundary conditions, and so must indeed
be a solution of the problem. ’

It would normally be of interest to determine the wall
‘heat fluxes and mean fluid temperature, and this can be

done with the following equations:

q‘;\'.lo (x) Bk; [@C();) (i)(two- te> + @éj%_) (:’c)(twi- te>j] (rr.n.3)

ar. (%) %{; {@i(é) (;E)(two— te> + cbi(jl_) (i)(twi- te>:‘ (IT1.D.4)

tm(;{) erfl(l)) (:E)(two- te> + erfli) (;E)(twi— te> + t, (II.D.5)

These follow from Equations (II.B.10), (II.C.l1l), and (II.D.2).

b. Heat flux specified at each wall

Here the boundary conditions are

t(0,y) =t
q"(x,1) = qn (I1.D.6)
q"(x,-1) = qn.

10



and, .as in the preceding case, it can be seen that the

following expression is a solution of the problem.

Dy

t(x,y) = = [eéz) (’?"17)‘1&':0 + ei(g) (i’{’)q‘:\‘ri] + te (IT1.D.7)
Also

too(X) = Géi) (Xyay + 6(2)(x)qw + t (II.D.8)

£, & =2 9(2) () q + 9(2) (x)qWl vt (II.D.9)

(0

9(2) (K)ar, + 9(2) (x)qu + ot (II.D.10)

t (%)

c. Temperature specified at one wall and heat flux
specified at the other

It will be assumed that the temperature is specified

at the "outer" wall. Then the boundary conditions are

t(0,y) = t
t(x,l) = too (II.D.11)
q"(x,-1) = i

Here the fluid temperature is given by a combination of the

third and fourth fundamental cases.

D.
t(x,y) = 953) (i,i)(two—te> + 63.(_4) (X,¥)ay; -]{—‘ + t, (II.D.12)

and

q‘;o(i) = @ég) (x) 5]‘; <two - te> + @éi) (i)q‘;i (II.D.13)
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twi(sz) = ei(g) (%) (two - te> + ei(i) (%) —%‘— q“"l + t, (II.D.14)
- () /= («) =y ’h
t (X) = emg (%) (two - te> + emi (X) == ab, + t, (II.D.15)

2. Axially varying wall boundary conditions

To illustrate the rationale behind the form of the
solutions for axially varying wall boundary conditions,
attention will be directed to the particular case of
t, = te and t  varying with X in a stepwise fashion
(see Fig. II.D.1l). Suppose now that one wished to evaluate
the fluid temperature at some position ﬁl. From (IT.D.2)

it appears that

eGP = ol @D e @)+ ol @ e P ] e )

(
(o] wO p=}
. [e‘“&-—& &)}at € ) + [e‘l’& -t &)]est & )
e} 1 3 WO 3 o 1 4 WO 4
+ t (II.D.16)

e

In fact (II.D.16) does give the temperature distribution

for the posed problem since the equation satisfies both the
governing differential equation and the specified boundary
conditions. (Note that Géé) = 1 and all fundamental solu-
tions with negative X arguments are zero by definition.)

The above equation can be written more simply as

4
t(il,}—') = Z [eél)(Ql - en,{z)] 6t (€ ) + t, (II.D.17)
n=;

and it can be seen that at any X

) o & - 0 9)] 0ty (E,) + £, (11.D.18)
all steps
before x

t(x,y)

12



Now suppose one is confronted with a similar problem.
except that the temperature at the outer wall is a continu~-
ous function of X (or of the dummy variable £). One
could approximate two(g) by a series of small steps such -
as depicted in Figure II.D.2; then t(X,y) would be given
by (II.D.18). And now, if the steps are made smaller and

more numerous, in the limit the sum becomes an integral./
£=x
= 35) = (1) (= =
t(x,y) f [90 (x - €,y) dtwo(g) + oty (I1.D.19)
£=0
And now, to handle a wall temperature distribution made up
of continuous curves and steps one simply evaluates the
integral in (II.D.19) in the Stieltjes sense rather than
in the ordinary Riemann sense; that is, one breaks the
integral up into sums and integrals.*
The varying wall heat flux case is handled in a similar
fashion. For the case of an adiabatic inner wall there
results

g
£(X,9) = —%—f
g:

==

o

[eéZ)(i - g,§)] dg" (£) + t_ (II.D.20)
(o]
It will be noted that this solution satisfies the governing
differential equation and the specified boundary conditions.
The equations of interest for the three types of wall
boundary conditions are set forth below in the same format
as that employed for the uniform wall boundary conditions.

Note that all integrals appearing must be evaluated in the

Stieltjes sense.

*The réader is referred to References 21 and 30 for discus-
sion of these methods as applied to the circular tube and
the flat plate boundary layer.
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Figure II.D.l. 1Illustration of a Step Wall
Temperature Distribution
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Figure II.D.2. Illustration of an Arbitrary wall
. Temperature Distribution
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a. Temperature specified at each wall

Here the boundary conditions are

t(0,y) = te

t(x,1) = two(x) (IT.D.21)

t(x,-1) = twi(x)

and the solutions are

€=x
€@y = | o &
£=o

(€)

wo

e,sz)] at

E=x

+f | [ei(l)(i - 5,37)] at . (€) + t_ (II.D.22)
3

€=
o @® =g5¢ [ ol @ - 0] e @
h | %o
o
+j [@o(;) (% - g)} at_; (&) (II.D.23)
€=O
.
ay @ =5 [ [of) & - ] e @
h £=o

¢ =x
+f [@J&) (x - &)} dtwi(g")} (II.D.24)
€

15



E=x
+j' [QI;;) (x - g)] at . (€) + t_ (II.D.25)
€=

o}

b. Heat flux specified at each wall

Here the boundary conditions are

t(0,y) = te

a"(x,1) = q¢ (x) (II1.D.26)
a"(x,-1) = qi. (x)

and the solutions are

£ =x
e@p =20 [ [0l & - 6.9 ag @)

=0

£=x ;
+j [ei('g) (x - 6,37)] dg" ; (£)) + t, (II.D.27)

g:o
¢=%
D
£, (F) = [egi’(i - a)] day (€)
€=.O
-
+f* [eéi) (X - g)} gl (€)Y + t (II.D.28)
g=o

16



e)]- aq! ()

)| aay (e)} ot

(II.D.29)

c. Temperature specified at one wall and heat flux

specified at the other

Hwer the boundary conditions are

t(0,y)

t(x,1) =

q"(x,-1)

and the solutions are

£=x

t
e

two(;‘) (I1.D.31)

qy; (€)

t@d = [0l & - 6.9 ar @

€=O

—k}-l[ [ 0{*) (% - 6,37)] dq'. (E)+ t_ (II.D.32)
g=o
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+ [ [@éi;) (x - g)] dq, (€) (II.D.33)
=
-_3'{' Y

i@ = [ [efd @ - 0] e @

g=0
D =x |

+ -]-{11[ [ejf;) & - g)] agqh. (€) + t_ (II.D.34)

€=O
¢ =x

Ph () (2
+ _].;f [9 (- g)} dgy.(€) + t_ (II.D.35)
€

II. E. The General Nusselt Number Relations

It was brought out previously that the familiar Nusselt
number is not emphasized in this work since it acquires the
utility of the fundamental solutions only in several special
cases of the wall boundary conditions. This fact will be
demonstrated in the present section in which are derived
the Nusselt number relations in terms of fundamental solu-
tions for the four wall boundary condition cases. It is
hoped that the reader who is experienced in working with
the Nusselt modulus for problems of the type treated here
will find this section useful for relating his experience

to the fundamental solution results.
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Uniform wall boundary condition Nusselt numbers will
be derived for the four problem cases treated previously

In each.case the wall denoted by the subscript "o" will be
treated. For the parallel planes geometry, of course,

identical results would be obtained for the wall referred
to by the subscript "i."

By definition

h D
A o h
Nuo = T (ITI.E.1)
and
q;;
A __wWo :
h, =2 +——% (I1.E.2)
WO m
Hence
D n .
— h q'wo
Nuo =5 \T = t~> (IT.E.3)
wo
1. Case one

Here the Nusselt number will be found for the case of
a uniform temperature specified at each wall.

Combining
(rr.n.3), (11.n.s), and (II.E.3) one obtains
®£;) two - ¢ ) + ®(l)<tw1 -t >
Nuo = () ( ) (IT.E.4)
£ -ty - 02 (e - t‘> - gl (t - )
wWo e mo _ e wi
Hence
-t
@(1) + ol1) _______;{\
o1l t -t
Nu = WO e

° 0 €. -t (II.E.5)
1-0.."11 +-<ﬁ?——1;7;—>
wo e
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2. Case two
For the case of a uniform heat flux specified at each

wall, the Nusselt number is found by combining (II.D.8),

(II.Dp.10), and (II.E.3).

o
Nu (II.E.6)
g (2) o (2) g (2) g (2)
© Oi qWO O?. qu mi q‘WO mi q'Wl

or
1 (IT.E.7)

Nuo = T T
EW—1—> ~el2) (1 4 ?Tw.:i

o(2) L g(2) L
ol qVVO mo qWO

3. Case three

Here the Nusselt number will be found at the wall at
a uniform heat

From (II.D.13),

which a uniform temperature is specified,
flux being specified at the other wall.

(II.D.15), and (II.E.3)

(3) (4) " h
@ t -t P —_—
Nu_ = (“(’O) > oi 1(]; Dh (II1.E.8)
two ~ e 6 5 <,wo - : mi qw1 k|
or
.. _ﬁ
®(3) + <I>(4) s ]f__ (II.E.9)
Nuo = Eh
1 - 9(3) - 9(4) q-WJ- k
mo mi t - te
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4.

Case four

In this case the Nusselt number will be set forth for

the wall at which a uniform heat flux is specified, a uni-

form temperature being specified at the other wall. From
(Ir.n.14), (1I1.D.15), and (II.E.3) one obtains

N

or

D.
" h
Lo &
D
(s) (¢) ;0 _h (3) (<) Ph
93(w1t>+eoé OT—es<w1t> e‘Lq'wok
(IT.E.10)
Nu (IT.E.11)

o
(a) (4) ( ) (=)
ple) _ gle) s _ 9 3 ><i
I&o k

It can be seen from the relations for the four cases

that the Nusselt number is a function of the relative magni-

tudes of the fluxes or temperatures at the walls. Hence,

an infinite number of Nusselt numbers can exist for each

fundamental case, whereas the number of fundamental solu-

tions is finite - five for each of the four cases.
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ITI. LAMINAR FLOW

ITI. A. Survey of Previous Studies

The first published study of heat transfer in a closéd
conduit was that of Graetz®2 in 1885. Graetz considered
flow in a circular tube with uniform wall temperature, and
was able to obtain the first three terms of an infinite
series solution for the local Nusselt number. Graetz's
series approach is the one most commonly employed by suc-
ceeding investigators; unless otherwise specified, it is.
the approach used by all the authors mentioned in this sum-
mary. Graetz's work is available in Jacob's book, "Heat
Transfer. "26

In 1923 Nusselt®*® presented what appears to be the
first study of heat transfer in laminar flow between par-
allel planes. He treated the case of uniform and equal
wall temperatures and used an attack similar to that of
Graetz., His solution also has the same shortcoming as
Graetz's in that the series for the local Nusselt number
converges very slowly near the thermal entry, and the
effort involved in the computation of more than the first
three terms was prohibitively great. Leveque®® alleviated
this difficulty in 1928 with his approximate integral-type
solution valid near the thermal entry. Leveque also pre-
sented the first solution for a nonuniform wall temperature
case. His work is available in a heat-transfer review by
Drew.ls

- In 1940 Norris and Streid39 published an independent
verification of Nusselt's results. This was done again by
Purday®” in 1949, and by Prins, Mulder, and Schenk,*® and
Yih and Cermak®® in 1951. Thus, by 1951 the first three
terms of the series solution for the local Nusselt number
were very well established for the case of uniform and

equal wall temperatures.
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Yih and Cermak, in the same 1951 paper, continued on ..
to generalize their uniform and equal wall temperature solu-
tion to the case of variable (but equal) wall temperatures
using a superposition method. They then treated the insu-
lated walls case, the case of uniform and unequal wall .tem-
peratures, and the case of variable and unequal wall tem-.
peratures. In the same paper they also solved the circular
tube problem for variable wall temperature and for an insu-
lated wall, and they treated the finite wall resistance .
case. This paper seems to be the first published proposal
of the superposition method for handling the variable wall
temperature problem in internal flow, although the.method.
had previously been used in certain external flow problems

by Rubesin. 4®

Unfortunately, Yih and Cermak's work did not
receive wide circulation, so the method was not in general
use until it was outlined by Klein and Tribus®® in 1953.

k'8 solved the case of

van der Does de Bye and Schen
finite wall resistance with equal wall temperatures in 1953.
Berry4 and Schenk®?! also treated this problem in the same
year. 1In 1954 Schenk and Beckers®Z dealt with the case of.
finite wall resistance and nonuniform inlet temperature pro-
file, and Butler and Plewes® treated the case of one wall
at a uniform temperature and the other wall insulated.
Schenk”° solved this problem again in 1955 and also dealt
with the case of the uninsulated wall having a finite
resistance. Bodnarescu® solved again the constant and
equal wall temperature problem, and also considered the
effects of axial conduction. In 1956 Dennis and Poots®”
used the Rayleigh approximate method to solve the problem
treated earlier by van der Does de Bye and Schenk.

Sellars, Tribus, and Klein”

made a significant con-
tribution in 1956 by showing that the WKBJ approximation
(after Wentzel, Kramers, Brillouin and Jefferies), often

used for obtaining solutions of the wave equation, can
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fruitfully be applied to the internal entry length problem
in conduits.. They derived asymptotic expressions for the
eigenvalues and eigenconstants occurring in the uniform and
equal wall-temperature problem, and observed that these.
expressions gave excellent results for values higher than
the second or third. They also solved the uniform and
equal wall heat-flux problem by an inversion method..

12518 g5lved the uniform-

More recently Cess and Shaffer
equal and uniform-unequal wall heat-flux problems by a
direct attack using the procedure suggested by Siegel,

58 pzung?© treated the case of arbi-

Sparrow, and Hallman.
trary but equal wall heat fluxes. In another paper Cess
and Shaffer®** list the eigenvalues and eigenconstants
occurring in the uniform and unequal wall temperature prob-
lem. Pahor and Strnad®® calculated the uniform and equal
wall temperature Nusselt number employing the properties

of the confluent hypergeometric fuhction, and Brown’
reports the first ten eigenvalues and constants for this
problem with eleven figure accuracy.

Several methods differing from the Graetz series
approach have been proposed for the solution of thermal
extrance length problems. Levy®3® presents an approximate
solution based on the problem of heat conduction through
a composite slab. Singh®® suggested expanding the fluid
temperature in a series of Bessel functions. Agrawal?
employed an infinite Fourier sine series, and Gupta®® and

Sparrow and Siegel®?

applied variational methods.

Stein®® has considered flow between parallel planes
with a fully developed temperature and velocity profile.
He derived the fully established Nusselt number for con-
stant and unequal wall heat fluxes.

Finally, two mathematical papers appear in the litera-
ture which are helpful in the treatment of thermal entrance

33

length problems. The first is by Lauwefier, who presents
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some useful properties of confluent hypergeometric func-.
tions, and the second is by Berry and de Prima,® who. pro-
pose an iterative method for the determination of eigen-
values.

It is apparent that the eigenvalues and eigenconstants
necessary for computing the fundamental solutions of the
first and second kinds have already been reported at .least
once in the literature. For completeness they are also
calculated herein, together with those required for the
solutions of the third and fourth kind.
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III. B. Mathematical Formulation and Method of Solution .

In this section the four sets of fundamental solutions
will be developed for laminar flow between parallel planes.
It will be seen that the solution of the differential equa-
tion together with the appropriate boundary conditions leads
to an eigenvalue problem. The bulk of the labor involved |
in finding the fundamental solutions is that of calculating

the necessary eigenfunctions, eigenvalues, and constants.

1. The differential equations and boundary conditions

For laminar flow the eddy diffusivity of heat, ¢

H’
is zero, and (II.B.5) reduces to
2
99 - o 98 (III.B.1)
dy*© m ox
For laminar flow between parallel planes
_u_=2<1_—2) (III.B.2)
u 2 Y e
m
so (III.B.l) becomes
2
200 é%.<} - g2) &2 (III.B,3)
oy ox

This is the differential equation to be solved.

The boundary conditions on the equation for each of
the four fundamental cases are given by (II.B.14, 15, 16,
and 17).

Case 1 Case 2
6(1) (0,) =0 0(2) (0,5) = o
(2)
9(1)(i,1) =1 59_2 (x,1) = 1 (II1.B.4,5)
oy 4
(2)
6(1) (z,-1) = o 5§§2 (%,-1) = 0
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Case 3 Case 4

e (0,5) = 0 64 (0, =0
o
6(a) (x,1) =1 0 * (%,1) =-Ll-1- (III.B.6,7)
oy
defas) (2) =
a_ (X,—l) =0 6 (X,-—l) = 0
%

It will be found that the solution of (III.B.3) re-
quires that the boundary conditions at the walls be homo-
geneous. This is not yet the case, but a simple transforma-
tion of the dependent variable, 6, will bring this about.
Far downstream of the entry the temperature profile becomes
fully developed; this fully developed temperature will be
denoted by 6.5. A new temperature profile, B, is
obtained by subtracting off the fully developed profile,
efd’ ‘from the temperature profile at any axial location, 6.
This transformation was first employed by Sparrow, et al.®?

= A
626 - ‘efd (I1II1.B.8)

Since (III.B.3) is linear, and is satisfied by both 6 and

6cq> it is also satisfied by 9.
o .
99 - = (1 - §2> o8 (III.B.9)
oy ox

And now, since both 6 and efd satisfy the identical

boundary conditions at the wall for each of the fundamental

cases, the boundary conditions on & become

27



Case 1 Case 2

5(1) (0,5 = - 0{3) 52 (0, = - 0{2)
(2)
6(1)(§,1) =0 5:_2 (x,1) =0 (IIr.B.10,11)
y
(=2)
9(1)(§,—1) =0 a:_g (X,-1) =0
Y
Case 3 Case 4
5(2) (0,5) = - 82 5(¢) (0,5) = - ol
(<)
5(2) (z,1) = 0 53_4 (x,1) =0 (ITI.B.12,13)
Y
A (a) =
- (x,-1) =0 5% (x,-1) = 0
Y

The fully developed temperature profiles are deter-
mined in Section III.B.3. For the moment they will be
assumed known.

The differential equation and the homogeneous boundary
conditions are now in hand; the solution of the problems so
specified follows in the succeeding section.

2., Solution of the four fundamental problems - general
considerations

Equation (III.B.9) yields to the method of separation

of variables. Let

B(x,y) = X(x) - Y(¥) (III.B.14)
Then
l .X.."—=..§_ 2{_:_,=_7\2
- Y 32 X
1 -y

where A\ 1is a constant. Thus the following two ordinary

differential equations are obtained
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X' + —3§2— A%x =0 (III.B.15)

YY" o+ % (1 - 372> Y =0 (III.B.16)
A solution of (III.B.15) is

X =e (I1I.B.17)

It will be recognized that (III.B.l16) is a differential
equation of the Sturm-Liouville type, where A is the
eigenvalue and 1 - y° is the weight function. Thus, if
the boundary conditions on Y are homogeneous, and it will
be shown in a moment that they are, then the equation
together with the boundary conditions form a Sturm-Liouville
problem and there are an infinite number of possible eigen-—
values, %n, and eigenfunctions, Yn. Thus, from
(I11.B.14), (I1IX.B.16), and (III.B.l1l7), a solution of
(III.B.9) is

This satisfies the differential equation, but in order to
satisfy the boundary condition at X = 0 all the possible
eigenfunctions must be superimposed. This is permissible
since (II1.B.9) is both linear and homogeneous.
_ - L Nk
O(x,y) = Z c Y (Y)e (III.B.18)
n=o

The Cn's are eigenconstants determined by the boundary
condition at x = 0 in the following manner. From
(Ir7.B.18) and (III.B.10, 11, 12, 13) one obtains for all

four fundamental cases
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- 9fd(§) = Z cnyn'(i}) (I11.B.19)
n=o

Making use of the orthogonality property of a Sturm-Liouville

function

+ 1 .
f (1 - 5}2) Y - Y dy =0 n #m (III.B.20)

-1

one obtains

+1
_f Gfdl—§2>Ynd§= f( >Y2d§~
-1
(Ir1.B.21)
Thus
+2
—2 —
- j’ efd <} -y ) Y dy
- -1
Cn ey (I11.B.22)

J’ (1 -y ) Yn dy
-1

Once the eigenfunctions and‘the fully developed temperature
profiles are in hand for the four fundamental cases, the.
corresponding eigenconstants can be calculated from
(I11.B.22). It should be noted that it is actually efd
evaluated at X = 0 that appears in this equation; this
has sighificance for case two where it will be shown that
beqg is a function of X.

It can be seen that in order for (III.B.18) to satisfy
the boundary conditions at the wall (III.B.10, 11, 12, 13)

the following boundary conditions must be imposed on Y.
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Case 1 Case 2

Y(1l) =0 Y'(l) =0 .
(I11.B.23,24)
Y(-1) =0 Y'(-1l) =0
Case 3 Case 4
Y(1) =0 Y'(1) =0
(II1.B.25,26)
Yi(~1l) =0 Y(-1) = 0

Since these boundary conditions are homogeneous, the dif-
ferential Equation (III.B.16) together with these conditions
do indeed form problems of the Sturm-Liouville type. The
solutions to this particular problem can be represented in
terms of confluent hypergeometric functions, as noted by
Lauwerier.®® However, these functions are as yet only
inéompletely tabulated in the literature and it was found
necessary to solve the equation directly for this study.

The methods used for calculating the eigenfunctions
and eigenvalues for the four fundamental cases will be

described in Section IITI.G.

3. The fully developed temperature profiles

In Section III.B.l1 the fully developed temperature
profile was introduced, and was defined as the temperature
profile occurring far downstream of the thermal entry. 1In
this section the fully developed temperature profile for
each of the four fundamental cases will be presented. It
will be seen that these profiles are invariant with x for
cases one, three, and four; furthermore, for these cases
the profiles can be discovered from physical reasoning

alone, without solving the governing differential equation.
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a. Case one

From (III.B.4) it is seen that the wall boundary con-

ditions here are

6(2) (z,1) =1

6(1)(z,-1) = o

Since the flow is laminar, the temperature profile approaches
a straight line from 0 at y = -1 to 1 at y = +1. The
development of this profile appears something like that shown
in the following sketch.

1 1 1
thermal far
entry downstream
O = 9(1) or— 9(1) 0—9-9(1)
Opb—>x

It can be seen from the sketch that the egquation for the
fully developed profile is
(1) - 1 ( —>
03 > (1 +¥ (III.B.27)
This result could also have been obtained by solving
the governing differential equation. Since the heat trans-
fer to the fluid at y = 1 is conducted right through and
out again at y = -1, the fluid temperature does not change
with X in the fully developed region. Hence (III.B.3)
reduces to
dZG(l)
_fd =0
dy2
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Thus

(1) _ ~ o
efd Cly + C2

where Cl and C2 are the constants of integration,

Applying the boundary conditions at y = +1 and -1,

respectively
l=C +C
1 2
0=-C +C
1 2
Hence
= =1
Cl Cz 2
and
(1) - 1 ( —)
efd 5 1+ y

which agrees with the result obtained from physical reason-
ing;
b. Case two

From (III.B.5) the wall boundary conditions are

(2)
P 1) =1
oy
(2)
9% z.,-1) = 0
oy

In this case the equation for the fully developed tempera-
ture profile is not obvious from physical reasoning alone
since it is not a straight line; however, it can readily
be found from (III.B.3). The following sketch shows the

manner in which the temperature profile develops.
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, 59(2) =.l / 59(2) -.=1-. /59(2) 2}—
/ — — —
/ oy 4 // oy 4 // BY 4
thermal ‘ far
entry downstream
0l o gl2) ols g(2) 0 ble g (2)
QF—>> x
Equation (III.B.3) and the boundary conditions
(III.B.5) are reproduced here for convenience.
529(2) 89(2)
_fd_ é%,<1 _ §2> £d (III.B.28)
oY% %
89(2)
9,1 =7 (III.B.29)
oy
69(2)
fd_ (%,-1) = o0 (III.B.30)
oy

Since the wall heat flux is uniform, energy balance

considerations dictate that

eéZ) = 2% (III.B.31)
£d
and
59 (2)
m .
£ . (III.B.32)
ox

Furthermore, since the temperature profile is fully

developed
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(2) 3
Befg _m

£ fd = 5 (III.B.33)
ox ox
Hence (III.B.28) becomes
829(2)
—fd - f%-(} - §2> (III.B.34)
3y

Integrating with respect to vy

69(2)
fd _ 3 <} 1 —§> -
—24 =2 (5-£7%)+ £ (R

Applying the boundary condition at y = -1

=3 (. 1 -
S T 3> v E &)
o1
fl (X) = S
Hence
(2)
aefd = _3_ 7 — _l_ _3> + ..].'_
55 T6\¥Y 3% 8
Integrating with respect to ¥y
3 /1 - 1 - 1 - -
9é§)= -i'-é-(—z— y2 - 1—2- y4> +.§ y + f2 (X) (III.B.35)

+1
(2) -3 3 /(1 =2 _1_‘—4> 1= = =5 -
emfd 2 Te\zY ~13Y )+tgy+ £, x)|(1 -y dy

-1
(III.B.36)

Performing the integration, one obtains
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39

(2) _ =
p'\&8) = fg(x) + 5575

Meq
Combining (III.B.31) and (III.B.37)

39

£f,x) = 2x - 5575

Hence, inserting in (III.B.35)

(2) .3 (Loe 1 oa), Lo, oz 39
%a “Te\zY -13Y )+t gY*t2x - 3575

Finally

1 - 39 - 3 - 1 -
0] =§<16X"2§5+Y+‘4'Y2 _§Y>

~The fully developed temperature profile for case
tinually changes with x, but its dependence on

invariant.

c. Case three

From (III.B.6) the wall boundary conditions

case are

fa) (3) (}E,l)

1l
[

ae (3)
oy

(}-Es"l) |

]
o

(III.B.37)

(ITT.B.38)

(IIT.B.39)

(I1IT1.B.40)

two con-~-

vy becones

for this

And here the development of the temperature profile appears

as follows.
1 1 1

thermal
entry

far
downstream

v

o) (5)
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It can be seen from the sketch that the equation for the
fully developed profile is

(a) _
efg = ] (111.3.41)

d. Case four

From (III.B.7) the wall boundary conditions are

(e)
20" &1 -

oy

0(e) z,.1) =0

And physical reasoning shows the temperature profile to

develop as shown in the sketch below.

69(4) 39(4) _ 59(4)

=1 , =1 ) _ 1
, — — - = =
! oY 4 ) 4 / dy 4
thermal far
entry [ downstream
Of—— x
The equation for the fully developed profile is
ple) = 1 (1 + y) (ITI.B.42)
£4 4 ¥ -5

III. C. The Four Fundamental Solutions

From (III.B.8) and (III.B.18) it can be seen that for
. the four fundamental cases the temperature profile is given
by
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(IIIr.C.1)

In this section the above equation will be combined with the
fully developed temperature profiles found in Section III.B.3
to yield the fundamental solutions for each of the four
cases. Numerical values of these solutions are presented

in tabular and graphical form, the computational details

being provided in Section III.G and Appendix B.
1. Case one

Combining (III.B.27) and (III.C.l) one obtains for the

case one temperature profile

(1) =1 = E: ~ "3 "n
] 5 (1 + y) + cnYne (111.C.2)

n=o

This profile holds throughout the entire flow field. At

the walls, by definition, the above becomes
oo ii

l1) = p(2) =g
o1 10

Differentiating (III.C.2) and employing the definition
(II.B.10)

32
5 A

(1) 2 2%
olt) = {2) =4 (0} -2 .4 ) cyiae n

[e]e} -~
ay —_—_l n=o
(X1r.c.3)

(It is understood that the proper case superscript goes
with C_ and Yh.)

38



and

o (1) © - 22 525
8(3) = ¢(1) = _ 4 ———> =-2-4) cyl(le o
oi io 39 2 n'n
(ITI.C.3)
Now, from energy balance considerations
X
(1) = 2[ (cp(l) + o{)) ax (III.C.4)
m oo

o]

Performing the indicated integration yields

Qn(ll) =% Z [_é (Y (-1) - Y (1)> < 3 ->] (ITI.C.5)
n

n=o
But as X — », e - 0, and also, from the consid-
erations discussed in Section III.B.3, Gél) —>%—. Hence
0
_3 Z “n (g |
Z l: <Yn(-l) - Yn(lb} (I11I.C.6)

Combining (III.C.5) and (III.C.6) yields

1,3 ¢ ' S
91511) =5+ Z {_7\_2 (anl(_l) - yrvl(l)> e n (ITI.C.7)
n

n=o

The fundamental solutions of the first kind are summarized

below.

9(1) = e(l) =1
(o]e) ll

(1) = g(1) = ¢
6ol ®io
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(1) (1) - - NE
1) _ 1/ = ! & n
o 2 o1 2 + 4 Z c Y, (l)e
n=o
(1) = g(2) s T
1) - 1) = _ _ (- 8 'n
o{t) = o(2 2 -4 X c v (-le
n=o0
o0 32 2z
c - == NTx
ol) 2 g(1) 21,2 ¥ .Jl(y'(_l)—Y‘(l) e ° 0
mo mi 2 4 G n n
n=o n

The last three fundamental solutions are presented in
Figure III.C.1l and Table III.C.1l.

2. Case two

Combining (III.B.40) and (III.C.l), the case two tem-

perature profile is found to be

o(2) =L 1165 32 4 54352 Ly, i CYe_%?\i_
8 ¥ z Y 8 n"n

280 4
n=o
(I1TI.C.8)
At the walls the above becomes
o] 32
- == ATx
(2) = pl2) - 5=, 13 Z 3 “n
eoo eii 2x + 70 + CnYh(l)e (I11.C.9)
n=o
(2) = ol2) - - N
2) _ 2) - 5z _ _9 E: _ 3 'n
eoi eio 2x 140 + cnYn( l)e (ITI.C.10)

By definition for case two

o{2) = ol2) =
00 ol

a(2) = 5f2) = ¢
o1l 10



And from energy balance considerations
91512) = 2% (III.c.11)

The fundamental solutions of the second kind are summarized

below.
o0 - 82 2z
%o T Ol TR+ Ier ) Cpe 7
n=o
co - 82 525
o ol - gie ) cnene C
n=o

ol2) = 5(2) o4
(e]e] 11

92) = 5f2) = ¢

o1 10
0(2) = g(2) - 5%
mo mi

The first two fundamental solutions are presented in
Figure III.C.2 and Table III.C.1.

3. Case three

Combining (III.B.4l1l) and (III.C.l), one obtains for

the case three temperature profile

0 _ 22 523
o(3) =1 4 Z cye ° B (III.C.12)
nn
n=o

At the upper wall the above becomes, by definition

ole) = pla) o
(oo} 11

and at the lower wall it becomes
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22 2%

2
6l8) =0l =14 ) cv (1e ° T (III.C.13)

n=o

Differentiating (III.C.12) and employing the definition
(Ir1.B.12)

() - (s - ae‘s) = Lo s K
@Oo = = = 4 E: CnYn(l)e
y 1

n=o
(I1T.C.14)

And by definition for case three

o(8) = ofs) =
o] .'LO

From an energy balance between the thermal entry (x = 0)

and any X

X
(s) _ (3) 4=
em3 = 2 f q:og dx (IIT.C.15)

(o]

Combining (III.C.14) and (III.C.15) and performing the
integration

® Jc - 82 %%
erﬁs) = _% Z [-f— ! (1) G e ﬂ (III.C.16)

5 e
But as X — o, e 0 50, and also, from the fully

developed temperature profile, GéS)-a-l. Hence

I:s

= %.}Z " Yﬁ(l) (I11.Cc.17)

Combining (III.C.16) and (III.C.l17) yields
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B 32 2=
— — )\

() _ 3 E __rz 3 "n
®m T4 % Yﬁ(l)e

n=o

(ITr.C.18)

The fundamental solutions of the third kind are summarized

below.

gla) = gla) -
0o

ii
(s) _ o(s) - - X
3) - 3) - _ 3 'n
ole) = gfs) =1 4 E: c ¥ (-l)e
n=o0
0 32 2
- == N X
ol3) = ol3) = 4 Ez cy' (l)e ° B
n=o0o
o8 = ola) =
%oi
C - B2 3%
(3)_(3)___ §_Z_rl. 3 'n
emo - ml 1 -7 22 Yn(l)e
n=0 "n

K1

The three fundamental solutions that are functions of
are presented in Figure III.C.3 and Table III.C.1l.

4. Case four

The case four temperature profile is obtained by com-
bining (III.B.42) and (III.C.1).

32 2z
gl(a) - L+ 4+ E: C.Y e— e (I1I.c.19)
4 Y ‘ n'n T
n=o
At the upper wall the above becomes
) = gla) - -5 MeE
(4) 2 gla) -1 }: @ o
900 ii 5 + CnYh(l)e (I11.C.20)
=0
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and at the lower wall, by definition

9(41:) = (4) =0
(o) 10

Since the heat flux is specified at the upper wall in
case four

o(4) = ole) o 4
o i1

Differentiating, and combining (III.C.19) with (II.B.1l7)

c(,;L-) = J(_g) = -1 -4 Z CnYr‘l(—]_)e ® 'n (I11.Cc.21)
n=o0

From energy balance considerations

X
ole) - 2f Gb(‘*) + c1>(4)> (III.C.22)
m [o]e)

(@)

From the preceding three equations, one obtains

«© C - B2 2%
gle) = 3 Z [.—P— ¥ (-1) (e & o >} (II1.C.23)
m 4 a2 I
n=o n
But as x — «, e —+ 0, and from the fully developed
temperature profile, 9(4) i . Hence

n ..
Z "'EYn(‘l) (III.C.24)
=O n

Combining the preceding two equations yields

* c - 22 )%
91514) =31 4 % Z __21‘; Y! (-1)e @ 'n (III.C.25)
A

4
n=o0 'n
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The fundamental solutions of the fourth kind are summarized

below.
e’} _ 32 7\2'"
00 ii 2 nn
n=0
ple) = gle) = g
o1 10
ale) = gls) =
00 11
00 _ 32 7\2"'
®(§) - ®f4) =_1 -4 EZ. cyY'(-1)e ° M
o1 io nn
n=o
32 27
- 7;'%n

[ve]
C
9(4) = 9(4) =_.'1;+§. Z ——n-Y' (-l)e
mo mi 4 4 A2 B
n=o n

. The three fundamental solutions that are functions of x
are presented in Figure III.C.4 and Table III.C.1.

Let it be noted at this point that the infinite series
appearing in this section converge very slowly at small
values of X. Hence it is desirable to seek another form
of the solutions in this region; such a form is discussed
in Section III.E.
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THE LAMINAR FUNDAMENTAL SOLUTIONS

X

2.5x107%
2.5%x107 3
1.0x107%
1.5x10°2
2.5x107%
5.0x107%
7.5%10° %
1.0x10™*
1.25x107 %
1.5x107%
2.5x10° %
5.0x10"*

e}

X

2.5x10° ¢
2.5x107°%
1.0x107%
1.5x107%
2.5x107%
5.0%x10" 2
7.5%10°%
1.25x10° %
2.5%10"*
5.0x10™*

[o ]

TABLE III.C.1

First Kind

oy
19.145
8.638
5.242
4.501
3.687
2.762
2.357
2.168
2.079
2.037
2.002
2.000
2.000

o1

o

-0.01704
-0.1084
-0.4572
-1.242
~1.643
-1.832
-1.921
-1.963
-1.998
-1.999
-2.000

Second Kind

ol2) g2

ii mi
0.04251
0.08935
0.1335
0.1476
0.1643
0.1803
0.1843
0.1856
0.1857
0.1857
0.1857

)

9(2)—9(2)

oi mi
-0.00050
-0.00500
-0.01992
~-0.02915
-0.04331
-0.05888
-0.06291
-0.06420
~0.06429
-0.06429
-0.06429

e(.})
mli

0.01447
0.06596
0.1625
0.2103
0.2859
0.3993
0.4526
0.4777
0.4895
0.4951
0.4997
0.4999
0.5000

o (2)
ml
0.00050
0.00500
0.02000
0.03000
0.05000
0.1000
0.1500
0.2500
0.5000

1.000

o0

50




TABLE III.C.1 (Continued)

Third Kind

; ey o
2.5x107% 19.140 - 0.01449
2.5x107° 8.638 - 0.06597
1.0x107% 5,242 0.001194 0.1625
1.5%x107% 4.501 0.009819 0.2109
2.5%107% 3.687 0.05685 0.2919
5.0x10"% 2.703 0.2356 0.4487
7.5%1072 2.102 0.3982 0.5680

1.25%x107* 1.291 0.6297 0.7343
2.5%x107% 0.3831 0.8901 0.9212
5.0x10" 1 0.0337 0.9903 0.9931

o 0 1.000 1.000
Fourth Kind

= 051 051 Ot
2.5x10"* 0.04299 - 0.00050
2.5%x10°° 0.09434 - 0.00500
1.0x10°% 0.01535 -0.00120 0.0200
1.5x10°% 0.1776 -0.00982 0.0299
2.5%x107% 0.2143 -0.0568 0.0493
5.0%x10™ 2 0.279 -0.2356 0.0921
7.5x107% 0.327 -0.398 0.1261

1.25x107% 0.3938 -0.6297 0.1738
2.5x107* 0.4685 -0.8901 0.2274
5.0x10™* 0.497 -0.9903 0.248

% 0.5000 -1.000 0.5000

51




III. D. The Nusselt Number Relations

As a matter of interest for workers used to dealing
with the Nusselt modulus for internal flow,geometries; some
of the expressions formulated in Section I.E. have been
combined with the laminar fundamental solutions given.in
the previous section. The Nusselt numbers for the two most
commonly treated cases, that of uniform and equal wall
temperatures and that of uniform and equal wall heat fluxes,.

are presented in Figure III.D.1 and Table III.D.1l.
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TABLE III.D.1

LAMINAR NUSSELT NUMBERS FOR UNIFORM AND
EQUAL WALL BOUNDARY CONDITIONS

Equal Wall Temperatures

X Nu
2.5x107* 19.72
2.5x10"° 9.951
1.0x107% 7.741
1.5x107% 7.582
2.5%10° 2 7.543
5.0x10" 2 7.541
7.5%10" % 7.541
1.0x10™* 7.541

1.25%10"* 7.541
1.5x10"* 7.541
2.5x10"* 7.541
5.0x10 * 7.541

o 7.54072

Equal Wall Heat Fluxes

X Nu
2.5x10 ¢ 23.79
2.5%x10"° 11.86
1.0x10 2 8.803
1.5%x10 = 8.439
2.5x10 % 8.263
5.0x10 = 8.236
7.5%10"2 8.235

1.25x10°* 8.235
2.:5x10° 1t 8.235
5.0x10 * 8.235

® 8.23529
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III. E. Relations Valid at Small X

It was pointed out at the end of Section III.C that..
the infinite series appearing in the fundamental solution
expressions converge very slowly for small values of x.
Thus, in order to shorten the time of computation, it is
natural to seek a limiting type of solution valid in the
small X region. Leveque®® has obtained such a solution
for a uniform temperature wall, and others, for example,
Eckert and Drake,®! have derived the counterpart. for a uni-
form heat-flux wall. These derivations will be presented

here for the sake of completeness.

1. The differential equation

Recall from (III.B.l) and (III.B.2) that the energy

equation for the entire region between the two planes is

2
a_e - e 98 (III.E.1)
dy® m OX

where
u _ 3 =2

Fm" =3 (1 -y ) (III.E,Z)

Now, very close to the thermal entry (very small x) the
temperature profile growing from the heated wall penetrates
only a very short distance into the flow field; that is, the
thermal boundary layer is extremely thin. Thus, focusing
attention on the upper wall, the entire region of the prob-
lem is that area near X = 0 and y = 1. In this region
very close to the wall the velocity profile is nearly
linear, and this suggests the possibility of replacing
(III.E.2) with a straight line of the same slope at the
wall.
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Thus

a‘—l— = . 37 + 3 (III.E.3)
m

for y = 1. Converting to an ordinate whose origin is at

the upper wall, let
n21-y (III.E.4)

Then the velocity profile becomes

u -
m
And (III.E.l) becomes
2
98 . o el (III.E.6)
on° m ox

Combining the preceding two equations

- ,
06 -3 ) —a—?— (III.E.7)
X

This is the energy edquation valid in the region under con-
sideration.

Since the problem'here resembles that of heat transfer
from a flat plate, the possibility of the existence of a
similarity solution suggests itself. Such a solution does
indeed exist, and it will be derived in the following two

sections for the two wall boundary conditions of interest.

2. The uniform wall temperature case

Here the wall boundary condition is

Orao = 1 (III.E.8)
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The similarity solution to be sought is of the form
6 = Y () (III.E.9)

where
_ i
E=n7x ° (III.E.10)
Combining (III.E.7), (III.E.9), and (III.E.10) one obtains

the ordinary differential equation

,(//u + _i]_-é_ é’zw' = 0 (III.E.ll)

The solution of this equation is

3

y=06=c jfe 48 3¢ 4 c, (ITI.E.12)
_ where Cl and Cz are constants. From the boundary con-
dition (III.E.8), and from (III.E.10) one obtains

6€=O =1

Hence (III.E.12) becomes

3
1=c J[; 48 a¢ +C
1 2

g=o
at the wall. The integral above vanishes, as can be seen

by expanding the exponential in a series and integrating

term by term. Thus

Now, by definition 6 =0 at x =0 (£ = x). So
(III.E.12) becomes
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£2
0 = Cl <:J[; 48 d;> + 1
£ =00

Since the integral vanishes at € = 0, this can be written

as

_E°
_ 48
0=c, f e atE + 1 (III.E.13)

From Jahnke-Emde2”

oo a3 1
- -é—— 3
e 48 g =28 r<—1—> (III.E.14)
3 3
(@]

Combining the preceding two equations, one obtains

C
1

= =3
Z
3 1
48 T (—§'>
Thus (III.E.12) becomes

E 3
9:_.—.__.._.3_.____.fe
Y
3 _;)
48 1_'<3 (o]

o
48 4o + 1 (III.E.15)
where o is a dummy variable.
The fundamental solutions sought are ®oo and Gm.

Turning first to ®oo’ (I1.B.10) yields here

- 90
%0 = - 4('5‘;]'>_ (III.E.16)

&
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Combining (III.E.10), (III.E.15), and (III.E.16) then

produces

e
o =122 3 ° (III.E.17)
00 1
3 1
4”1 (3)
Evaluating the constant yields
1
-~ 8
® = 1.23253 x (IIT.E.18)

o0

This fundamental solution holds for both cases one and
three in the region near x = 0 and a unity temperature
wall,

Qm is now found by performing the integration
indicated in both (III.C.4) and (III.C.15).

x
6, = 2 Jf o o OX (III.E.19)
o

So in this case

X
_ L
6 = ———iﬁi————_/f ¥ %ax (III.E.20)

mo 1
8 i)
48 T’<3 o)

Thus
2
_3
6 =—30 & (ITI.E.21)
m 1
3 1
48 1"("5)
Evaluating the constant yields
2
6 = 3.69759 %° (III.E.22)
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This fundamental solution, like the one preceding, holds

for both cases one and three.

3. The uniform wall heat flux case

In this case the wall boundary condition is

o._ =1 (III.E.23)

From (II.B.15) it is seen that this is equivalent to

fﬁi> = - %— (III.E.24)
on J=_
=0

Here the similarity solution assumes the form

—l— .
6 = %° y(t) (III.E.25)

where

£ =7 X (III.E.26)

Combining (III.E.7), (III.E.25), and (III.E.26), the follow-

ing ordinary differential equation is obtained

U+ fg—&zw' --fg €y =0 (III.E.27)

The solution of this equation is

3

¥ =C ¢ J[ e_ *° dé + C_ ¢ (III.E.28)
1l gZ 2

where Cl and 02 are constants. Integrating by parts,

the above becomes
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3 3

Y = Czﬁ - Cle— 48 _ %E-Cl§~/’£ e_ 48 ae (ITI.E.29)

Introducing (III.E.25) yields

3 3
1
) ‘ T 48 1 T 48 ‘

Applying the boundary condition (III.E.24), and employing
(III.E.26)

_i
<§%> =3 .5_?_> =c =- %—' (III.E.31)
57] ﬁ=0 ag =0

In arriving at this condition use was made of the fact that

£°
<[&e48d£ =0
g=0

as can be seen by expanding the exponential in a series and

integrating term by term.

Now, by definition 6 =0 at x = 0 (6 = ). Thus

(ITTI.E.30) becomes

°° £°
.l _ 1 .- " 48
0 “471'16(317]]’66 dg

o

So

¢, = ——=2 s (III.E.32)

48
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From Jahnke-Emde

- £2
fﬁe 48 4¢ =

o

(F31Y

28 r(—i—) (III.E.33)

Hence
c = -12
1 2
3 2°
" r (%)

And (ITII.E.30) becomes

s 1 12 ‘% 3 : "?fg‘
_ =8 1 12 3 ,
6 = x -7 € + z e + 78 3 J( c e do
3 2
48 F(}g) o) |
(III.E.34)
where o is a dummy variable.
Since 600 occurs at 7, = 0 (€ = 0), the fundamental
solution is
<z
- 12 =3 v
900 = ——E;—————— X (III.E.35)
3 2>
48 F<3
Evaluating the constant yields
2
-3
6 = 0.670950 x (III.E.36)

0o

Gm for this case follows directly from energy balance con-
siderations (see (III.C.1l1l)).

em = 2% (III.E.37)
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These fundamental solutions hold for both cases two
and four in the region near i = 0 and a unity & heat-
flux wall. | | ‘

The limiting fundamental solutions derived in this
section are indicated by the dashed lines on the fundamental

solution curves in Section III.C.

4, The Nusselt number relations

The Nusselt number relations for very small x are
readily obtained by combining the preceding results of
this section with those of Section II.E. This will be done

here for the four fundamental cases.
a. Case one

At very small values of x the temperature profile
has not yet propagated to the opposite wall, so @éi) = 0.

Hence (II.E.5) becomes

@(l)

Nu = 00 (III.E.38)

o t.. -t
1 - o2 1.+-<;39;———5;>
mo two _-te

Introducing (III.E.17) and (III.E.21) one obtains

Nu_ = — L (III.E.39)
!
48°% F<—> 1 t . -t
—_— N3/ 2% 3| 4+ (XL___e)|x
12 t -t
wO e
Thus
Nu_ = _— (I1I.E.40)
° — t . -t
0.811339 X° - 3 [1'+ (H)} %
WO e

For most wall temperature ratios, the second term in the

denominator is negligibly small compared with the first.
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b. Case two

Here Géi) = 0 at very small x, so (II.E.7) becomes
1
Nu = m (III.E.41)
° gla) | gte) (1, i
oo mo q&o

Combining the above with (III.E.35) and (III.E.37)

Nu = 1 (III.E.42)

o a
____].2____. }'E 3 2 < qu> }'E
- 1]
2 ., Lwo
48 F<;§>

Or

Nuo = " (IITI.E.43)

s L

0.670950 %° - 2 (1 + -ﬁ;£> X
Lo

Again, for most wall heat-flux ratios the second term is

negligibly smali.

c. Case three

In this case @é;) = 0, and (II.E.9) becomes

®(3)
Nu = (III.E.44)

° Dy
1 - 9(3) _ 6(4) 3{

Introducing (III.E.17), (III.E.21), and (III.E.37)
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X

ol

12

Y
3
48 r(%)
Nu = - B (III.E.45)
2 w _h
36 _3 Lei X \-
l -————x - 2 X
1 t -t
= (l> WO e
48 T 3
Or
_ &
1.23253 ¥ °
Nu_ = : X (III.E.46)
o D
N
-5 twi -
1l - 3.69759 x - 2 -t——-—':—t——X-
WO
d. Case four
Here Qéf) = 0 at very small x, so (II.E.1l1l)
becomes
- 1
Nu = (IITI.E.47)

°©  a) _gla) _ gla)/twi T %e
fe]e] mo mo D
o _h
qwo k

Combining the above with (III.E.35), (III.E.37), and
(III.E.21)

Nuo = " 1 2
12 - 36 tvi ~ e\ T
e - 2X - X
2 i . Dn
ag®r(2) 481 (1) N o X
3 3
(III.E.48)
Hence
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1

N - - - . -
u_ < — (ITI.E.49)
0.670950 X~ - 2% - 3.69759 = z°
w _h
q-wo k

III. F. Relations Valid at Large X

It can be seen from the fundamental solution expres-
sions in Section III.C that at very large values of X the
infinite series become negligibly small and the solutions
take on a much simpler form. Since in some applications X
will be large, this section is included'tc set forth the
fundamental solutions and Nusselt number relations valid in
this region. These are the fully developed solutions,

applying downstream of the thermal entry length.

1. The fully developed fundamental solutions

These expressions are obtained in each case by setting
‘the infinite series in the corresponding fundamental solu-

tion in Section III.C equal to zero.
a. Case one

ol1) = g(2) =
(e]e) 11

pl2) = gl1) g
ol 10

ol1) = 9{2) = 5
oo 11

ol1) = (1) = _
oi io

0l1) = (1) 21
mo mi 2
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b. Case two

c. Case three

a) (3)
o0

ol

@(3)
00

®(§)
oi

9(3)
mo

d. Case four

(o]0}

ol

@(4)
(oo}

(4)
%1

) (4)
mo

6(2) =

11

oo
10

CD.(.S)
1l

a!2)
10

ml

o(4)
11

o{2)
io

ole)
11

(2)
5

mi

N
i
+
N
(O8]

N
L

]
-
pbo ol
o

o

INTS

67



2. The fully developed Nusselt number relations

The fully developed Nusselt number relations follow
from the preceding results and those of Section II.E. It
should be pointed out that the shape of the temperature
profiles becomes fully established long before the profiles.
become fully developed in the sense outlined in Section III.B,
and for this reason the Nusselt number relations become A
fully developed, or invarient with x, at x values
approximately an order of magnitude smaller than do the

fundamental solutions.
a. Case one

Here one obtains

Nu_ = - Tt (III.F.1)
1l - 5 1+ T s
wOo e
Thus
1 - twi ~ Te
two ~ e
Nu, = 4 o (III.F.2)
()
L two ~ te i
Therefpre, when tWi 7 two’ Nu_ = 4. (ITI.F.3)
When twi = two’ (IXIT.7.2) is indeterminate and other

means must be employed to evaluate Nuo. Combining the
appropriate Nusselt number expression of Section II.E with
the appropriate general fundamental solutions of Section
IIT.C yields
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- B2 )2 = - 22 3%
, 3 “n _ E: e 8 “n
Y cyle c ¥!(-l)e
N, ='§> '2=0 2= H:O 2 =
c, -2k c - &\
P ! - — ] —
) 2 yre ) SE¥i-De
n=o D1 n=o0 1
As X becomes large this expression approaches
J - ] -
.8 c vl (1) - c _v!(-1)]
fe) 3 Co Co
a——— 1] e 1 -
32 Yo(l) 22 Yo( 1)
o o
Thus
Nu =222 when t_, =t (III.F.4)
o 3 70 wi wo e
In Section III.G it is found that %i = 2.82777, so
Nuo = 7.54072 when th = tWO (III.F.5)
b. Case two

Combining (II.E.7) with the appropriate fully developed

fundamental solutions in Section III.F.1

Nu = L -
O ll‘ ‘ ’ll.-
- . 13 (- 9><qw1> —(-qw1>
2 + ==+ (2X - =7 )l = ) - 2x {1 + ——
70 140 Iro Lo
Thus
140
Nu = 0
o) .
26-931’.—1—
- Lo
Note that when q&i = q&o, Nuo = 8.23529

and when Nuo = 5.38462

i = 0
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For convenience, (III.F.7) is plotted in Figure III.F.1l.
By referring to the curve one can see the strong influence

of heat flux ratio on the laminar case two Nusselt number.

c. Case three

For this case

D.
h
_iwg_____
Nuo = (IITI.7.10)
<:iqw1 k i>
Hence, when qw 7~ 0, Nu_ = (I11.F.11)

When q&i = 0 (III.F.1l0) 1s.indeterminate, and, as in case
one, the entry length expressions must be used. From
(II.E.9) and the fundamental solution expressions of
Section III.C

00 32 2=
- 22 23
4 cY' (e & n
nn
Nu_ = o= — (III.F.12)
3 “n -5 kix
= —— 1
1 -1+73 § 2 Y. (L)e
= n
n=o

for the case of q&i = 0. And as X becomes large this

expression approaches

4C Y' (1)
_ 0”0
Nu =
o) 3 Co
32 v (1)
a2 ©
o
n - - 16 2
Hence, when 40 = 0, Nu, = —3-%0 (ITI.F.13)
In Section III.G it is found that %i = 0.91140, so when
q&i = 0, Nuo = 4.8608 (IT1.7.14)
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d. Case four

Here one obtains

- 1 .
Nu_ 1L (i o T (III.F.15)
2 4 D.
B
qwo k
Thus, when q&o 7~ 0, Nu_ = 4 (ITI.F.16)
And when q&o = 0, Nuo = 0 (IITI.7.17)

IITI. G. Solution of the Sturm-Liouville Equation

l. General considerations

It will be recalled from Section III.B.2 that the
following Sturm-Liouville equation results from the sepa-

ration of variables in the energy edquation

Y+ xi (1L - ¥®) Y =0 (III.G.1)
Up to this point it has been tacitly assumed that the eigen-
functions, Yn,,.are known quantities, but no mention was
made of the means by which these numbers were obtained. And
to be sure, the reader interested only in obtaining answers
to a particular practical problem need not concern himself
with such details; the previous sections along with Table
III.C.1 and Figures III.C.l through III.C.4 should suffice
for his purposes. However, since the bulk of the effort
involved in preparing the aforementioned figures is centered
on the solution of (III.G.l), it is only proper that this
solution be discussed.

For the lower values of %n the equation must be solved
numerically, and the method used for this is set forth in

the succeeding section. But for the higher values of %n
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it is possible to obtain an analytic asymptotic solution

valid near the walls, and this is done in Section III.G.3.

2. Solution at the lower eigenvalues

As mentioned in Section III.B.2, the eigenfunctions
sought .are confluent hypergeometric functions, and,fWere
these sufficiently well tabulated, the.problem at hand -
would be reduced to nothing more than opening the proper
book of. tables. . Unfortunately, they are not tabulated for
the arguments involved.here.

The historical approach to problems of this sort has .
been to employ the method of Frobenius. This was attempted.
by the author, but it was found that the series coefficients
(which are functions of 2A) diverge before diminishing,
thus posing a severe accuracy problem.

The advent of the electronic digital computer has made
feasible an alternative to the above procedure consisting
~of an iterative method proposed by Berry and de Prima.”>
The essentials of this method are summarized here.

If (%i)k is the kth approximation of the desired

value, %i, and (Yn(§))k is a solution to (III.G.1)

with 2% = (%i) such that (Y_) satisfies the requisite

k Nk
boundary condition only at y = -l1; and further if
+1
- 2 _._
jﬂ w () (Y > dy =1 (I11.G6.2)
x

-1

(w(¥), the weight function, is (1 - ¥°) here) then the

next approximation is given by

(22) - (ﬁ > + (? (1)> <Y (1{) (III.G.3)
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This sequence of approximations converges monotonically to
xi, the value that permits satisfaction of the boundary
condition at y = 1. .In (III.G.3) the plus (+) sign is
associated with the condition of Yﬁ(l) = 0, and the minus
(=) sign with -Yh(l) = 0.

Computationally, the method consists of assuming. .a

value for 7\121

and a value for Yn(—l) or Yﬁ(—l) (which-
ever is not specified as zero by the boundary condition),
and integrating (III.G.l) numerically as an initial value
problem. In general, the resulting solution will not be

normalized, that is

+1

f (1 - 3% (Yn>2 ay # 1

-1

But noting that (III.B.16) is linear, it follows that

( Yn) =K Y
k
where

1

n +1

f (1 - ¥3) (Yn>2 ay

=1

So the factor Kn is then computed and applied to satisfy
condition (III.G.2). Next the assumed value of %i is
corrected by (III.G.3), and the process is repeated until
the boundary condition at y = 1 is satisfied. The last
iteration determines %n and yields Yn(§). Since values
for Yn(§) were stored in the computer after the final
iteration it was a simple matter to calculate the eigen-
constant, C_, from (III.B.22) by a Simpson's rule inte-

gration.
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The computations were performed on a Burroughs 220
Electronic Digital. Computer at the Stanford University
Computation Center. Further details of the computational
procedure are contained in Appendix B.

-The eigenvalues and pertinent combinations of constants
are presented in Table III.G.l, and sketches of some lower ..
eigenfunctions are given in Figures III.G.1l through III.G.3.
It should be pointed out that results are not given for
n = 0 for case two since the eigenfunction.-in that instance

is a constant and the eigenconstant is zero.

3. Solution at the higher eigenvalues

It is possible to find an asymptotic solution to
(ITI.B.16) that obviates the need for carrying out the.
numerical integration discussed in the preceding section
for all but the first few eigenvalues. This asymptotic
solution employs the WKBJ approximation (after Wentzel,
Kramers, Brillouin, and Jefferies), and was first used in

convective heat-transfer work by Sellars, Tribus, and

Klein.>” Applying this method, one proceeds as follows.
Let
Yy = (¥) (III.G.4)
Then from (III.B.16)
g"(y) + (g' (17))2 + 22 (1 -3%%) =0 (III.G.5)

Seeking an asymptotic solution of the form
= =1 .o
g %ngo + gl + %n 92;+ (III.G.6)

this equation is substituted into (III.G.5).
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To satisfy the equation for all n the coefficients of

each power of kn must vanish; thus one obtains

gt =+i VY1 -% (11I1.G.7)

O

and
g, = - In (\ﬂi§> (III.G.8)

Since the solution is to apply for large %n’ the remaining
terms in (III.G.6) are neglected. Combining (III.G.4),
(I111.6.6), (IITX.G.7), and (III.G.8)

y Y
in_ j’WfI:§§ dy -in_ j—\ff:§5 ay
(@] O
v =Ge + He
n 1
T
o5

This is the WKBJ approximation. Changing to a more tracta-
ble form

(ITI.G.9)

Yn = (IT1.G.10)

This equation will be patched into another approximate

solution of (III.B.16) valid only near a wall.

a. The inner wall

Near the inner wall y — -1. Letting y = - 1 + z,
1 - ¥¥ = 22 near the wall. Thus (III.B.16) becomes

YY"+ N2 22y =0
n n n
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where Y = Y(z). This is a form of Bessel's equation having
the solution

1 3 1 ) 3
_ E) 2 2 2 V8 2
Y GlZ J;_(?%—-xnz + le J; i—<f3 %nz (I1ITI.6.11)
3 3

n

For large xn this has the asymptotic form

3
Ve, F s 6@' 2 1)
3 Gl cos( 3 7\nz -1z + I—Il cos 3 'Anz - i3

jo

(IT1.G.12)

Directing attention back to the WKBJ form (III.G.10), note
that

y -1

jVI——{;ZdE;

[e]

y
WIF e [VioF w
-1

I
o

z
= _ I v - »2
-7 + j’ 22 z< dz
o

So near the inner wall (for small 2z)

y el
le—?d§=—%+vgf

[

Hence (III.G.10) becomes

3
\V 8 E) T
Go ©08 [—3“ M ~(F 2 ¢>}
i 2
4
2 =z

Y =
n

(IT1.G.13)
4

77



In order to patch (III.G.1l2) and (III.G.13) it is apparent

that one must take
¢ = 1\/=— (III.G.14)
o v%n e

and
51 T m
Gl cos Iz + Hl cos 73 = cos(,4 A, ¢) (II1.G.15)
.. 57 . ™ _ . s
Gl sin 75 + Hl sin g5 = s1n(f4 xn + ¢> (IIT.G.16)

¢, and thus Gl and Hl, will be determined later when
the appropriate boundary conditions are brought into con-

sideration.

b. The outer wall

Near the outer wall y — 1. Letting y =1 - ¢,

1 - y° = 2¢ near the wall. Then (III.B.16) becomes
" 2 =
vr o+ a2 20 Y =0

where Y = Y(£). As before, the solution of this equation

N GQJ(V—xc>+HcJ (\/——7\@>(IIIG17)

And again, for large %n

o, cos (0 F - 5) 0w cos (0 1)

1
n 4

2 C

is

g
il

(I11.G.18)
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Here the integral appearing in (III.G.10) becomes
1 y

IV1—§2d§+fVl—§2d§
o

1

y
[ 7
O

¢
5o [ Y-t a
o]
=E——V—§C§
4 3

So (III.G.10) becomes

3
cos [£38 'AnZZ —(Z— 7\n - <D>]
) T
4

3

n T A
7\1’1

(IIT1.G.19)
4

2 ¢t

- And patching (III.G.18) and (III.G.19) requires that

51 T m

G2 cos 1§-+ H2 cos 75 = cos(f4 %n - ¢> (1I1I1.G6.20)
- . T s

G2 sin 75 + H2 sin 55 = s1n<:4 A, - ¢> (III.G.21)

Now the four sets of boundary conditions will be discussed.
c. Case one

Here the boundary conditions are

Y (-1) 0

Y (1) 0
Applying (III.G.l1ll) at the inner wall it is found that
L ~/ 3
Hl = 0 since z°J 1(?7§§ xnz2j> does not approach zero
)
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with z. Then from (IIX.G.15) and (III.G.16)

5T . T ' . 571 T -
cos 17 sJ_n(Z- 7\n + q§> - 8in iz cos (-4— 7\n + cb)-— 0

So
. T STYN
sin(ZTa +¢-3T)=0 (I11.G.22)
This demands
T S
_4_7\n+¢_.._2_ =in'n', n=0, 1, 2, e (III-G.23)

No generality is sacrificed if n = 0. And from (III.G.16)
and (ITII.G.23)

G =1 (ITI.G.24)

Thus near the inner wall
1 3
_ =z 1Z8 2
Yn =z J_l_< 3 7\nz > (I1I1.G.25)
3

At the outer wall H2 = 0 for the same reason that

Hl = 0 at the inner. So

. T 5T\ o
Sln(z 7\n - ¢ - iz 0 (I11.G6.26)

Combining this with (III.G.23) yields

A = 2n +

n ’ n = O’ l, 2, ... (III-G;Z'])

wjn

Also

¢ = (-1)™ (III.G.28)
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So near the outer wall

2 s
Y = (-1)nc2Jl <;é§-xncé> (III.G.29)
B

n

The asymptotic eigenvalue expression is now in hand, but
the eigenconstants have yet to be determined; they are
given by (A.9). From (III.G.25)

35 -2 2 2
._.__11 = gz 2J ﬂ 7\ 22 - ﬂ 7\ z J .ﬁ 7\ 22
37 /- 1\ 3 n 2 n~ "4\ 3 n

Y V-1 3 3

(IT1.G.30)
X2 1
-1 2° A,
As z—>0, zJ =0 and z 23 —
= L 2
3 3 3 <?é>
3T 3
So
S Y
dY 2° 22
— =— (III.G.31)
3y /=_ =
= st r(3)
Noting from (III.G.25) that at y = -1, Y~ vanishes for
all values of )
ayh
57—' = 0 (I11.G.32)
N/
y=-1

Passing to the outer wall, from (III.G.29)

(3, - o[ @) Fo (B0

Yy (I11.G.33)
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So at the outer wall

Y
<5Yn n+1 2° 7\3 .
—n = (-1) T ———n (III.G.34)
o /5ey ‘;‘ "
r($)

Note that at this wall Yn = 0 only for )\ = 'An,'
ayn
SO YW must be computed from (III.G.17).

dY 1
n _ o)
<§7\n>— " % Mn ¢ -J* @ 7
y=1 3

L 3G L OH

2 2 2 2

+ £ J_l_ S +  J _1_3—7\

3 n -3 n

As ¢ — 0 the first three terms vanish, but since

. T 51
. =Sln<2ﬂn-¢-17

2 sin (- '7§T'

(from (III.G.20) and (III.G.21)), then

axi = (-1) —E\/? (III.G.35)
So
n+1 1
—:—?l> = ;_1) i x; ® (III.G.36)
I
Emplioying (A.9) yields
L 2
- o 2 n(2)00 3
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Also

wl»

2
, . _ nti 9 F<§'> "'é'
: r(3)
37
i
n+1l -3
= (-1) 1.012788 Xn
and
4
2 2 1
S r(2) -2
_ 2 3 3
Cnyﬂ(l) Ty 2N Mn
: (3
3™ T

1
1.012788 ) °
n

d. Case two

Here the boundary conditions are

Y'(-1) 0

Y' (1) 0

Differentiation of (III.G.1ll) gives

dY 3
<———n— =G Ve "z T (33@- %nz2>
Y

- 2
O /=, _ 1

1

— 8
- H %E ApZ I, (—§§ 7‘n22> (II1.G.37)
)

To satisfy the boundary condition at the inner wall
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Then from (III.G.15) and (III.G.16)

. o m —
sin (Z-%n + ¢ -313) = 0]

from which

b =_l712_ - ’ZTI A, x0T, n=0,1,2, ‘- (I11.G.38)

Again n 1is taken to be zero. It follows that
H =1 (ITIT.G.39)

So near the inner wall
1 gl
2
Y =2z 0 <ﬂ A 22> (III.G.40)
n _1\ 3 n
3

A similar condition exists at the outer wall, resulting

in

A = 2n+%—, n=0,1, 2, --- (ITI.G.41)

As before, this result leads to
n
H2 = (-1) (IT1.G.42)

So near the outer wall

1 3
. = (-1)" %g . (————’38 xnc2> (III.G.43)
oy

n

Now, in order to find the expression for the eigen-

oY
constants, ii(:giﬂ " must be determined at both walls.
3% n
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Differentiating (III.G.40) yields

oY 2 2 } 2
o n - _ 5 A< 2 4 2 V' 8 2
- -5-.;\;- | - % 8 z J'é (3 : 'Anz >+ 3 7\nz J_5__ 3 7\nz
y y:.._; -1 3 3

(ITIT.G.44)

At z = 0 both of the above terms vanish, so

a ay
s—' =0
y=-1
Near the outer wall G2 = Gg(k), so
9 BY éJ V8 f‘
dC g 3 xné
oy
y—>1 3

- Now since

’ ™ m
sin( == - LT 2+ ¢
¢ = <12 4 n > (III.G.45)

2 sin <—-§>

it follows that

% (-1) L (III.G.46)
d%n 1/3 T
Thus, at the outer wall
1
oY n+1 6 +
: M (-1) __;_r__g_ A, (I11.G6.47)
Y = Y
y=1 3° r(%”—)

And from (III.G.40) and (I1I.G.43)
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i
3

1
_ 3 Y
Yn(-l) =7 A\, (III.G.48)
8 2
2 I’('s‘)
2
3° -3
= (_1\D
Yn(l) (-1) T A, (ITI.G.49)
()
So employing (A.10) yields
= 4
_ nt1  3° 4\ " 3
cn = (-1) 7 1“(5) A, (ITT1.G.50)
T 26
Also
-
L 4 5
_ n+a 36 F('j‘) -
CnYn(—l) = (-1) - P(Z%> kn
3 3
2T
S
n+i - =
= (-1) 0.3001255 7\n
and
x
cy (1) = 3” F<%> -
nn A 2N Mn
= M3
2 T

o

- 0.3001255
- n
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e. Case three

Here the boundary conditions are

Y'(-1) 0

0

Y (1)

Proceeding as before it is found that at the inner wall

G =0
1
=0T _ T
¢ = 12 4 xn
H =1
.1
Thus
5 3
Y =23 V8, 22> (III.G.51)
n _ 2 3 n
3

The conditions at the outer wall demand that

. T 5m\ _
s:.n(-4—7\n—¢—12 =0
So
xn =2n+ 1, n =0, 1, 2, *-- (III.G.52)

And for the region near the outer wall it is found that
1 3 .
_ n 2 V 8 2
Y = (-1) ¢ Ji (———3 xnc> (III.G.53)
3

Now, Yﬁ(l) is given by (I11.G.34), Yn(—l) by

oY
(III.G.48), and S‘—n by (III.G.36); so from (A.11)
7\ ——
y=1
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there results

1
= 2
n+1 8 -5
= (- 2 -6 (.2_) s
Cn (-1) T r 3 %n
Also
n+1 '+
= 2 5,2 -1
CnYn(—l) = (~1) p- 3 %n
= (~1) 1.102658 x;l
and
2
) P(‘2—> S
cy' (1) = 2 3/, @8
nn 1 4 n
5 F(§
3T

f. Case four

-t
3

1.012788 %n

Here the boundary conditions are

Y(-1)

Y' (1)

0

0

At the inner wall there obtains

H =
1
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So
1 3
_ 3 (Vs . =
Yn-zJ_l_(B ‘)\nz>
3

From the conditions at the outer wall

. m m —
Sln(z%nw—ﬁ)‘o

So

A, =2n+1, n=0,1,2, "

Note that the eigenvalues for cases three and four are

identical; indeed, this is to be expected since the wall

boundary conditions for the two cases are symmetrical.

For the region near the outer wall it is found that

1 3
_ n = Y8 2
Yy =(1) ¢J (—g" e >

-
3

Now, Yﬁ(—l) is given by (III.G.31), Yn(l)

by (III.G.49),
3 aYn
and — 5 > by (III.G.47), so (A.12) yields
ay n §=l
5
n+i 3—6_ 4 - '?_'3'
Cp = (-1) 7 F<§> M
&
T 2
Also
e
n+1 32 -1
CnYr'l(—l) = (-1) 57 N,

= (-1) ' 0.2756644 x;l
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and

ol

CnYn(l)

o I M |
S K
Wi nojo] i
N I

=)

wls

™ 2

- 0.3001255 A
n

wlu

The numerical results of this section are to be found
in Table III.G.l. ©Note that the actual values rapidly
approach these asymptotic results.

It should be pointed out that the eigenfunctions in
this section are not normalized in the sense discussed in
the preceding section, so the individual values of Cn,
Yo and Yﬁ differ by a multiplier from those found in
Section III.G.2; however, this factor enters in such a
manner that the actual products used, CnYn and CnYﬁ’

are identical to those in Section III.G.2.
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IV. TURBULENT FLOW

IV. A. Survey of Previous Studies

In comparison with its laminar counterpart, the par-
allel plane thermal entrance length problem for turbulent
flow has received. little attention in the literature.
Although it is perhaps the more interesting from the. stand-
point of practical application, the turbulent solution
requires the use of more complex velocity and diffusivity
relations, and thus is a less attractive vehicle for explor-
ing new mathematical techniques.

The work that appears can be divided into three general

categories, distinguished by the method of solution employed:

(1) integral methods

(2) direct solution of the governing partial differ-
ential equation.on an analog or digital computer

(3) computer solution of the eigenvalue problem
resulting from separating the variables of the
governing differential equation

Examples of these methods occurring in the literature are
briefly discussed below; a more detailed treatment can be

found in the excellent survey of Cess.*®

Integral Methods

Deissler'® has treated the circular tube geometry with
uniform wall heat flux and with uniform wall temperature,
and the parallel planes geometry with uniform and equal
wall heat fluxes. Cess!'! also dealt with the latter prob-
lem. He employed the Nikuradse velocity profile and
Martinelli temperature profile, and assumed equal diffu-

sivities of momentum and heat transfer.

Direct Computer Solution of Differential Equation

Jenkins, et al.2®® solved the circular tube with uni-

form wall heat-flux problem, assuming eH/eM = 1.
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Schlinger, et al.®* treated the parallel planes case with
uniform, but unequal, wall témperatures.

Eigenvalue Problem

Latzko®? presented the first treatment of the turbu-
lent thermal entrance length problem. He dealt with the
uniform wall temperature circular. tube case, and employed
a 1/7-power velocity profile. Beckers® extended this.work,

60 who also considered the uni-

as did. 8leicher and Tribus,
form wall heat-flux case. Sparrow, Hallman, andﬂsiegels;
presented a solution for this. latter problem. . Both Berry?
and Poppendick*® treated the parallel planes with. uniform
and. equal wall temperatures, but they do not present the
eigenvalues and constants. :

Cess,9 and Sternling and Sleicher®® demonstrated the
utility of the WKBJ approximation for finding the hiéher
eigenvalues and constants for turbulent tube flow.

Finally, several fully developed temperature profile
solutions should be mentioned. Harrison and MenkeZ®*
extended Martinelli's work to the uniform, but unequal,
wall heat-flux case for parallel planes, and Barrow® also
dealt with this problem. Seban®® treated the case of uni-

form and equal wall temperatures.

IV. B. Mathematical Formulation and Method of Solution

In this section the general solution of the energy
equation will be developed for turbulent flow between par--
allel planes in a manner directly parallel to that for the.
laminar case in Section III. Some of the mathematical steps
that have identical counterparts in Sectioh III are omitted

to avoid repetition.

1. The differential equation and boundary conditions

From (II.B.5), the energy equation for turbulent flow

between parallel planes is
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d ( g >ae Y
— 1l 4+ = Pr ) — | B s e (Iv.B.1)
a{z[ v a:;} 1ou, 3x

For computational purposes the equation is henceforth
written as

€ €. ,
2 (1 ¥ 2 Pr> X - = 28 (IV.B.2
dy M oy m ox
Unlike the laminar case, an expression for »ﬁ#- as a
m

function of y cannot be derived from analysis alone, but
rather is obtained from Experimengal investigations. Simi-.
larly, the presence of 7% and Eﬁ in the edquation imposes
complications over the laminar solution. These matters will
be dealt with later in this section. Let it suffice at this
point to say that the diffusivity expressions employed are
valid only in certain Reynolds and Prandtl number ranges,
and that numerical computations are performed only for

Re = 2x10%, 3x10%*, and 5x10%*, and Pr = 0.01 and 0.70. The
Pr = 0.01 calculations are limited to the fully developed
temperature profile cases.

The boundary conditions on (IV.B.2) for the four
fundamental cases are given by (III.B.4) through (III.B.7).
Again, these boundary conditions must be made homogeneous,
and this is acdcomplished by the same change of variables.

= A
656 - 0.4 (IV.B.3)

This yields the equation

€ € a )
ol {(1 LM H pr> §_e_} = Té’l_ 98 (IV.B.4)
3y |- V.o M oy Ym 3%

and the homogeneous boundary conditions (III.B.10) through
(I1IX.8B.13).
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2. Eddy diffusivity for momentum transfer

Before solving (IV.B.4) one must have in hand a rela-
€ -
tionship between -7¥ and vy suitable for the Reynolds

number range of interest. The expression used for this
work is a modified form of the expression suggested by

10 which is itself a combination of Van Driest's

Cess,
expression near the wall and Reichardt's middle law. The
attractiveness of Cess's expression lies in the fact that
it is a single equation applicable over the entire flow

field; thus, the usual patching of equations is obviated.

In Cess'’s nomenclature his expression is

+ 2 P 2
Mo, .K2.<_r..0.> 1 (=
2 9 - r

J.

2
r r 1
-1+ 2 (§g> 1 - exp + -5 (IV.B.5)
o

—

where K and AT are constants with values of 0.4 and 26,
respectively. This equation was developed for application
to circular tubes, hence the radius terms.

Applying the expression to the parallel planes geom-

etry, there results

1

2

2
+
€ Ky
M1 ° 52 a r-1 x
v 2\t (l'y>(l+2y>(l’e"p 2y "2

(IV.B.6)
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To determine the suitability of the equation for.parallel
planes application,‘it was compared with the .experimental
data for air reported by Page, et al.*?*»>5 1n go doing it was
found that a "bumping factor" modification provided a better
fit to-the data for the 20,000 to 50,000 Reynolds number

range studied herein. The resulting expression is

+
e Ky
M_ 1 o —2)(’ —é)
S=5{1l+|— (l—y 1+ 2y

2
2
2

-1.2
<§ + 1400 y § - §é§> <} - exp +_ {> —-%
A /y!

(IV.B.7)

where K = 0.4 and A' = 26. Figure IV.B.l shows the
shape of this diffusivity profile.

In order to use this expression it is necessary to
have a relation between y:' and Re. It follows from the
definition of y+ and YZ

L<
+
>
<l
Q
) Qﬂ
(o}

i

o

o

[

w
Nﬁ

(Iv.B.8)
+a Yo/ 2o
Yo =7y p
and from the defining equation for £
2
u
A m
T, = fp 29, (IV.B.9)

that
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The experimentally determined friction factor expression

given by Schlichting®2

*Vl__—_"-' 4.0 ],Oglo (Re Y} f>— 0.40 (Iv.B.11)
£

can be used to provide the link between f and Re. This
equation is plotted in Figure IV.B.2.

8

In many studies the Deissler'® expression is employed

€
for 7# near a wall, so it is of interest to note the
close agreement between it and the Van Driest relation
(to which the Cess relation reduces in the wall region) as

shown in Figure IV.B.3.

3. Velocity profiles

The velocity profile expregsion, %ﬁ-, used in _
(IV.B.4) is obtained from the 7# relation (IV.B.7) and
the shear stress distribution. From force balance consid-
erations it is simple to show that

Y
T, v,

in the passage between the parallel planes. And from the

definition of ¢

M
£ ( du _
3, eM;+ v dy T (IV.B.13)
Thus
_e-. (e + v .d_g'. - -—z—
g, \"M T '/ dy o vy,

Combining with (IV.B.9) and rearranging
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Eddy Diffusivity Expressions Near a Wall
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._‘b_"[..‘.l g‘ll_:__lfRe
v as 8
y
where
ﬁé__ﬁ-‘—— (IV.B.14)
m

Changing coordinates so that the independent variable is

zero at the lower wall, let

n=1l+y
Then
Y an W g
’So
il
- - _ f Re (L - 7)
u n=0 8 < dn
My
[o) v
But at the wall, u = 0. Thus
n
U(n) = fge él = 1) gy (IV.B.15)
M
O]
o Vv

Numerical integration of this simple quadrature provides
the necessary relation for u.

The velocity profiles calculated in this manner are
several values of Reynolds number are plotted in Figure
IV.B.4 in the form of- n+, where

+
u

P
"o

ne>

=3 _2f | (IV.B.16)

Good agreement with the data of Page, et al. is shown.
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Actually, the use of (IV.B.1ll) for friction factor
calculation isenot completely consistent with the use of
(Iv.B.7) for f%-, since one expression should. follow . -from
the. other. Herein it was elected to .choose (IV.B.7) as the
"standard," and the friction factor was then calculated in
the following manner.

For a given Reynolds number, a trial f was obtained
from (IV.B.1ll) and this was used with (IV.B.10) and (IV.B.7)
to obtain an expression for -%¥ (y). Then (IV.B.15) led to

u(y). From Section II.B it is known that

Jg\ [
el
Qi
Il
N

This integral was computed numerically and found to differ
from‘2 forvthe first £ +trial; however, the computation
suggested the next trial, and the process was completed
until convergence was obtained. Several friction factors
calculated in this manner, and hence consistent with
(Iv.B.7), are plotted on Figure IV.B.2.

4., Eddy diffusivity for heat transfer

In addition to ghe %g and u relations, an expres-
sion is needed for Eﬁ- before the solution of (IV.B.4)
can proceed. The analysis of Jenkins®® is employed for
this purpose herein. Figure IV.B.5 indicates the results
of his analysis.

For the 0.01 Pr case Jenkins' results were applied
without modification. However, to facilitate numerical
computation his diffusivity ratio expression was approxi-
mated by more simple algebraic relations. These relations,

4

first employed by Leung,®* are set forth below.
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Pr = 0.0l

range of application relation
€ €
n = ¢ 0.6 -E =90.010
v €
M
€ € €
0.6 < 1n -2 ¢ 3.0 -H = 0.018 + 0.016 (1n -2 - 1.0)
4% EM v
[ € €
3.0 < 1n 2 ¢ 4.0 H = 0.05+ 0.05(1n -2 _ 3,0)
v € v
M
€ € €
4.0 < 1n-2 < 10.0 H =010+ 0.1501n -2 - 2,0)
v €M v
€ €
n -2 > 10.0 H-1.0
Yy - EM

For the 0.7 Pr case the data of Page, et al.
indicates that the Jenkins analysis underpredicts the mag-
nitude of the diffusivity ratio. Hence a corfection factor
was applied to Jenkins' results in the region y+ S 26,

In the region 0 <y < 26 the diffusivity ratio was taken
as unity since Deissler'® demonstrated that this assumption
‘yiélds heat-transfer results in good agreément with experi-
mental data for this Prandtl number. Deissler used ¢y in
place of ey, and the ¢y used herein in the sublayers

is substantially that of Deissler's .(see Fig.vIV.B,3).

The turbulent core diffusivity ratio used is

€ € €
H = _10.216 1n 6.0000865 —M><—ﬁ> (IV.B.17)
€ v /i €1\/‘[

M Jenkins

The correction factor, together with the Page, et al. data

from which it was derived, is plotted in Figure IV.B.6.
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Here again Jenkins' expression was approximated by

algebraic relations.

Pr = 0.70
range of application relation
€ €
n 2 ¢ -1.5 H = 0.70
v €M
€ & <
- 1.5< 1n-2¢ 4.0 H = 0.775 + 0.05 1n -4
- v € v
M
€ € €
4.0 < 1n -2 ¢ 10.0 E = 0.975 + 0.0025(1n =2 - 4.0)
v €M v
(S [
In -2 > 10.0 EH-1.0
v EM

5. Solution of the four fundamental problems - general
considerations

Attempting to separate the variables of (IV.B.4),
let

B(X,y) = X(X) - Y(¥) (IV.B.18)
Then
€ € ]
1 4 <1 + M —-I:I—Pr> v| =+ 2 -_3  (1v.B.19)
uY dy v M

Hence the two following ordinary differential equations

result.
X' + 1623X =0 (IV.B.20)
€ €
-2 (1 + -4 E Pr> Y'| + 22GY =0 (IV.B.21)
dy V.o &M
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A solution of (IV.B.20) is

— 2—
x = e 1ONX (IV.B.22)

As was its counterpart in the laminar case, (III.B.1l6),
(Iv.B.21) is a differential equation of the Sturm-Liouville
type. The weight function in this case is u. Thus, as
in Section III.B, the problem solution can be represented
by

- _ _ _ -l6xnx
6(x,y) = E: CnYn(y)e (IV.B.23)
n=o
where
+1
- f efqun dy
= -1
Cn ey (IV.B.24)

- o=
f uYn dy

—1

And again, the boundary conditions on Y(y) are given by
(I11.B.23) through (III.B.26).

6. The fully developed temperature profiles

The fully developed temperature profiles are needed to
compute the eigenconstants, Cn. In addition, of course,
they form the fundamental solutions themselves at distances
far downstream from the thermal entry. It will be recalled
that in the laminar case these profiles could be ascertained
from physical reasoning as well as by direct solution of
the appropriate governing energy edquation; unfortunately,
for turbulent flow such is not the situation (with the
exception of casekthree). Here the equations must be
solved. 1In this section the pertinent equations will be

set forth and their solutions presented.
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a. Case one

Here the temperature profile is fully developed when
all the energy transferred into the channel at the upper
wall is transferred out at the lower. Thus there is no

change in temperature with x, and (IV.B.2) becomes

€ € ase
.Q: <; +.7¥ .?5 p%) __gg_ =0 (IV.B.25)
dy dy

And the accompanying boundary conditions are

|
b

(1)
o w

|
(@]

(1)
Oeq (-1)

This equation has been solved numerically for several
values of Re and Pr, and the required results are pre-
sented in Figure 1IV.B.7 and Table IV.B.l. The method of

computation is the same as that discussed in Section IV.G.
b. Case two

As shown in Section III.B.3.b, for this case §2'= 23
X

hence (IV.B.2) becomes
€ € de -
.- <; + 2 2 P£> ——%gJ -3 (IV.B.26)
dy M dy

The boundary conditions are

(2)
defg

dy

I
INT

(1)

(2)
defé

dy

(-1) =0
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Solution of (IV.B.26) provides the shape of the fully devel-

9(2)

oped temperature profile, but the magnitude of £a

con-

tinually increases with x. In fact

pl2) = 2%
Teq

from (III.B.31). Thus the magnitude of the solution to
(IV.B.26) .is chosen such that when integrated over .the
channel as in (II.C.l) the result is identically zero.

This shape profile is called S(y). And
(2) _ -z =~
0i2) = 2% + s(3) (IV.B.27)

Results of numerical computation of S(y) can be found in
Figure IV.B.8 and Table IV.B.l.

c. Case three

This case requires no solution of an equation; rather
the fully developed temperature profile is evident from
physical reasoning alone, as it was for its laminar counter-

part. Referring to Section III.B.3.c it is seen that

(z) _
efg =1 (IV.B.28)

d. Case four

The equation governing the temperature profile here

is the same as that in case one, namely

€ € dae
a [@ P oE ) ..:f..ol] e (1v.5.29)
dy M dy

The boundary conditions are

()
a6

fd _ 1
= 1) =3

dy
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(2) _
efg (-1) =0

Again, the required constants for selected values of Re

and Pr are presented in Figure IV.B.9 and Table IV.B.1l.
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15

0.4

10*

Figure IV.B.7.
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Turbulent Case One Fully Developed
Solution Constants
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Constants
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Pr = 0.01 f

0.10
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— -S(-1)x10
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0.02——— 8(1)

0.01 N
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Re

Figure IV.B.8. Turbulent Case Two Fully Developed
Solution Constants
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Constants

0.7
0.6
0.5 =
4
efd (1)
0.4
Pr é 0.01
0.3 9(4)
Meg
0.2
0.06 7
0.05 AN
(2)
0.04 6fd (1) \‘
™.
0.03 =
AN
\\ <
N
(2) NG
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Figure IV.B.9. Turbulent Case Four Fully Developed
Solution Constants
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IV. C. The Four Fundamental Solutions

The temperature profiles for the four fundamental

cases in turbulent flow are given by

—l6%n§
6 = efd + Z CnY e (Iv.c.1)

This is obtained from (IV.B.3) and (IV.B.23), and is the
turbulent counterpart of (III.C.l1l). In this section this
equation will be applied to each of the four fundamental

cases.
1. Case one

Here the temperature profile is

om
ol1) - 6(l) EZ c v e-16%nx (Iv.c.2)

By definition, at the walls

o(1) = g(1) oy
(ofe) i ll
0(1) = g(1) =
O.'L lO

Differentiating (IV.C.2) and employing the definition
(II.B.10)

(1)
ol1) = 5{1) =4 59(1) <:€9 :>
oo 11
oy /=

Y

—16xi§
+ 4ZC Y'(l)e (IV.C.3)
nn

n=o
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and

(1
o{1) = (1) - _ <}9(1):> = <iie
ol 10
oY J=o

y=-1
—167\n
— ' —
4chyn( 1)e (IV.C.4)
n=o
From energy balance considerations
x
ol1) =5 j’ (%(1) + o)) ax (IV.C.5)
m oo io
o

Performing the indicated integration yields

(1) _1 - -162TX
em =3 E: <% (-1) - v! (?) -1 (Iv.C.6)
n=o
_ —l6%ﬁx
But as X = «, e — 0, and also, from the symmetry
of the fully developed profile, 9(1) % Q(l)(l) And
since 9(1)(1) = 1 by definition, (l) —>§-. Hence
o0
.Lz_fl-__.
5 (&n( 1) Yn(1j> (IV.C.7)

Combining (IV.C.6) and (IV.C.7) yields

-1622x
en(ll) =2+3 Z -7-\-12‘- (Y (-1) - ¥ (19 " l(1v.c.8)
n=o

The fundamental solutions of the first kind are summarized

below.
e(l) = Q(l) = 1
oY) ii
(1) = gla) o
oi 10
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00

(1) 2=
dG ~1l6A”x
olt) - @i(:‘:L) = > + 4 > c Y (e  ©

n=o

(1) 2=
9 -167\"x%
- 4 EZ C Y (-1)e

=0

c -1622%
[-i‘- (y (-1) - Y (1)) J
7\2
(o] n

The last three fundamental solutions are presented in.
Figure IV.C.l and Tables IV.C.l, 2, and 3 for Pr = 0.70.

ol

(1) 2 ga) 21,1
emo =% —3 %3 E:

n

2. Case two

Combining (IV.B.27) and (IV.C.l), the case two tempera-

ture profile is

(2) _ -16)°%
'8/ = 2% + s(y) + Z C Y e (Iv.Cc.9)
n=o
At the walls this becomes
9(2) = (2) = 2x + S(1) + Z cCYy (l)e—167\i£ (Iv.C.10)
foYe) 11 n n e
n=o0
pl2) - gl2) 2X + S(-1) + Z C.Y (.'1). —167@}2 iv.Cc.11)
oi io - ntnl~t/€ (Iv.C.
n=o0

And by definition

0(2) = of2) =
i

@(2.‘) - (2) = Q
lO
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And from energy balance considerations
0(2) = 23 (IV.C.12)

The fundamental solutions of the second kind are summarized

below.

(oo}

eéi) = ei(zi) = 2x + S(1) + Z cnYn(l)e-

16%§§

n=o

[0e)

eéi) = ei(i) = 2x + S(-1) + Z CnYn(-l)e

-16x§§

n=o0

(2) - ~(2) _
®oi B ®ii =1

(2) = -(2) _
®oi B ®ii =0

(2) = g2) = oz

The first two of these fundamental solutions are presented
in Pigure IV.C.2 and Tables IV.C.1l, 2, and 3 for Pr = 0.70.

3. Case three

Combining (IV.B.28) and (IV.C.l), the case three tem-

perature profile is seen to be

0

ole) =1 4 E: C Y e (Iv.c.13)

n=o

At the upper wall, by definition

ol2) = gls) =
(e]e) 11
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and at the lower wall

-167\°%
éi) = 9(3) =1 + Z CnYn(—l)e n (Iv.c.14)

n=o

Differentiating (IV.C.13) and employing the definition
(IT.B.12)

[o ]

(=) -1622x
ol2) = ols) =4 (98 =4 ) cy@e M (1v.c.15)
11 gy _ n'n
By definition
a(3) = o(2) = ¢
oi 10
Now, from energy balance considerations
X
A j’ o(3) ax (IvV.C.16)
m 0o
o

Combining (IV.C.15) and (IV.C.16), and integrating

oo P
C -16A°x
(z) _ 1 Z n n
of -3 = ¥, (e - (IV.C.17)
= n
n=o
But as X — ®, e — 0, and Qms — 1. Hence

Zc
1=1 E: ¥ (1) (IV.C.18)

n=o

S ':3

Combining the preceding two edquations yields

R

n=o

-16x§§
Yﬁ(l)e (IV.C.19)

0Q

S0l
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The fundamental solutions of the third kind are summarized

below.

6(3) = 9(3) =1

00 ii
1) 2=
~16A
(a) _ p(a) _ Z
%1 %o 1+ CnYn(—l)e
n=o
. (o) Rl -1623%
o'3) = p'8) = 4 >L C.Y'(De
0o ii nn
n=o
d)(S) = (I)(B) =0
o1l 10
00 a2z
) -16
mo m1 2 A2on
n=0 N

The three fundamental solutions that are functions of x
are presented in Figure IV.C.3 and Tables IV.C.1l, 2, and 3
for Pr = 0.70.

4. Case four

The case four temperature profile follows from
(Iv.c.l).

-1672x%
ole) - 6(4) E: c Y. e n (IV.C.20)
At the upper wall this becomes
-162°x
eég) = 9(4) = 6(4)(1) + }: c ¥, (L)e n (Iv.c.21)

n=o

and at the lower wall, by definition
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ole) = g{s) =9
o1 10

Also by definition, at the upper wall

alt) = pla) =
o0 11

Differentiating (IV.C.20)

(a) (2) ® -16xi§
o =9 = -1 -4 E: c.Y'(-1)e (IV.C.22)
oi io n'n
n=o
(4)
da
Note that fd > = -}T .
From energy balance considerations
X
ple) = 5 j’ ole) 4 ®§4)> dax (Iv.Cc.23)
m 00 io
o
So from the preceding equations
(2) 1 |c -162°x
ole) - 1 E: By (e n (IV.C.24)
m 2 A2 n
n=o n
-16232x
But as X —+ », e 50, and ple) _, gle)
m :
£d
Hence
(2) 1 - Cn
ple) = _ 1 }: Doy (-1) (IV.C.25)
m : 2 22 n
fd n=o 'mn
and
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[e¢]
ole) - 9(4) Z n Y!(-1)e n (IV.C.26)
m 2
n=0 M
Actually, (IV.C.26) has little computational advantage
here over (IV.C.24).
The fundamental solutions of the fourth kind are sum-

marized below.

-1622x%
ec()g) - eii) = 9(4)(1) + Z c vy (e ©
n=o
6(4) - 6.(4) =0
Ol 10
ole) = gls) =3
[e]e} 11
-1673%
(¢) _ ~(a) _ '
@0; = cbi:’; = -1 -4 Z c Y/ (-1l)e
n=o
o0 D -
mo ml mfd 2 ; xi n
n=

The three fundamental solutions that are functions of x
are presented in Figure IV.C.4 and Tables IV.C.l, 2, and 3
for Pr = 0.70.

As discussed in Section IV.G.l, the fundamental solu-
tions are not presented for small values of X because
numerical calculations were not performed for n > 2, and
the first three terms are insufficient for adegquate con-
vergence of the series in the small X range. ‘The X
values at which the small x solutions become valid are
calculated in Appendix E to aid the reader in estimating

the mid~-range fundamental solutions.
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x

6.0x10™*
8.0x10™*
1.0x107°
2.0x107°
4.0x107°
6.0x10"%
1.0x107%
2.0x107%
4.0x1072
6.0x107%

o]

X

6.0x10 ¢
8.0x10" ¢
1.0x10"2
2.0x10"°
4.0x107°
6.0x10" 2
1.0x107%
2.0x10°%
4.0x107%
6.0x10" 2

(o]

TABLE IV.C.1l
THE TURBULENT FUNDAMENTAIL SOLUTIONS

FOR Pr = 0.70, Re = 20,000
First Kind
o{} 051
53.1 -0.112
50.3 -0.292
48.1 -0.644
40.9 -3.92
33.2 -10.8
28.8 -15.1
24.5 -19.4
22.1 -21.7
21.9 -21.9
21.9 -21.9
21.9 -21.9

Second Kind

o(2)_g(2)
11 ml

0.0180
0.0183
0.0185
0.0191
0.0193
0.0194
0.0194
0.0194
0.0194
0.0194
0.0194

g(2) _g(2)
ol mni
-0.00220
-0.00241
~0.00259
~0.00315
-0.00344
-0.00348
~0.00348
-0.00348
~0.00348
-0.00348
-0.00348

o (1)
mi
0.0775
0.0981
0.118
0.202
0.318
0.389
0.459
0.497
0.500
0.500
0.500

g(2)
mi

0.00120
0.00160
0.00200
0.00400
0.00800
0.0120
0.0200
0.0400
0.0800
0.120

oo
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b

6.0x10"*
8.0x10~*
1.0x107°
2.0x1073
4.0x107°
6.0x10"°
1.0x10° 2
2.0x107%
4.0x10°%
6.0x107%

e}

X

6.0x10"*
8.0x10" *
1.0x10" 2
2.0x10° %
4.0x10"°
6.0x10"°
1.0x107%
2.0x107Z
4.0x10 %
6.0x10" 2

oo

TABLE IV.C.1l (Continued)

Third Kind

o{?
53.2
50.4
48.2
41.0
32.8
26.8
17.9

6.59

0.888

0.120

0

ol

.-

0.002
0.0072
0.0725
0.223
0.363
0.573
0.843
0.979
0.997
1.00

Fourth Kind

g le)
11
0.0179
0.0188
0.0196
0.0226
0.0269
0.0303
0.0352
0.0416
0.0448
0.0452
0.0453

o
-0.0092
-0.0116
-0.0164
-0.0732
-0.229
-0.368
-0.576
-0.844
-0.979
~-0.997
~1.00

mi

0.0715
0.0925
0.112
0.201
0.347
0.466
0.642
0.868
0.982
0.998
1.00

mi

0.00113
0.00152
0.00192
0.00384
0.00723
0.0100
0.0142
0.0195
0.0222
0.0226
0.0227
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X

6.0x10"*
8.0x10"*
1.0x10” %
2.0x107°
4.0x10°°
6.0x10"°2
1.0x10° %
2.0x10°%
4.0x10 2
6.0x10 2

e

X
6.0x10"*
8.0x10"
1.0x10"
2.0x10 °
4.0x10°°
6.0x10" 2
1.0x107%
2.0x10° 2
4.0x10" %2
6.0x10° =

0

4

3

TABLE IV.C.2
THE TURBULENT FUNDAMENTAL SOLUTIONS

FOR Pr = 0.70,

Re = 30,000

First Kind
oy oy
65.6 -0.30
61.9 -0.868
58.9 -1.74
49.2 -7.76
39.1 -17.3
33.9 -22.5
29.8 -26.6
28.2 -28.1
28.2 -28.2
28.2 -28.2
28.2 -28.2

Second Kind

0(2) _gf2)
11 mi
0.0138
0.0141
0.0143
0.0148
0.0150
0.0150
0.0150
0.0150
0.0150
0.0150
0.0150

p(2) _g(2)
ol mi
~0.00162
-0.00186
-0.00205
-0.00255
-0.00273
-0.00275
-0.00275
-0.00275
-0.00275
-0.00275
-0.00275

(1)
mi

0.0954
0.121
0.144
0.242
0.364
0.429
0.480
0.499
0.500
0.500
0.50Q

g (2)
mi
0.00120
0.00160
0.00200
0.00400
0.00800
0.0120
0.0200
0.0400
0.0800

0.120

o}
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x

6.0x10™*
8.0x10™*
1.0x10"2
2.0x107°
4.0x107°
6.0x10"°
1.0x107%
2.0x107%
4.0%x1072
6.0x10 %

o]

X

6.0x10"*
8.0x10™*
1.0x10™ %
2.0x10" %
4.0x10"%
6.0x107°
1.0x10™ %
2.0x107 %
4.0x1072
6.0x10" %2

co

TABLE IV.C.2 (Continued)

Third Kind
%3 053
66.0 -
62.0 0.0082
59.0 0.019
49.3 0.109
37.6 0.305
29.0 0.463
17.3 0.680
4.76 0.912
0.361 0.993
0.0272 1.00
0 1.00

Fourth Kind

o) ols)
11 ol
0.0144 ~0.01
0.0152 ~0.016
0.0159 ~0.0264
0.0186 ~0.115

. 0.0224 ~0.310
0.0253 ~0.467
0.0293 ~0.682
0.0336 ~0.912
0.0351 ~0.993
0.0352 ~1.00
0.0352 ~1.00

0.089
0.115
0.139
0.246
0.418
0.551.
0.732
0.926
0.994
1.00
1.00

g (4)
mi
0.00112
0.00152
0.00190
0.00377
0.00691
0.00934
0.0127
0.0162
0.0175
0.0176
0.0176
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X

6.0x107%
8.0x107%
1.0x107%
2.0x107°
4.0x107°
6.0x1073
1.0x107%
2.0x107%
4.0x107%
6.0x107%

[ve]

X

6.0x107*
8.0x107*
1.0x10™°
2.0x10" 2
4.0x10"°
6.0x10"°
1.0x107%
2.0x107%
4.0x1072
6.0x107%

o0

TABLE IV.C.3
THE TURBULENT FUNDAMENTAL SOLUTIONS

FOR Pr = 0.

Re = 50,000

First Kind

e
86.6
81.0
76.5
62.3
48.7
43.3
40.2
39.6
39.6
39.6
39.6

o5}
~-1.32
-3.20
-5.53

-17.2
-30.6
-36.0
-39.1
-39.6
-39.6
-39.6
-39.6

Second Kind

g(2) _g(2)
11 mli
0.00976
0.0100
0.0102
0.0106
0.0107
0.0107
0.0107
0.0107
0.0107
0.0107
0.0107

9(2)_9(2)

oi mi
-0.00112
-0.00137
-0.00155
-0.00191
-0.00199
-0.00199
-0.00199
-0.0019%99
-0.00199
-0.00199
-0.00199

g (1)
mi
0.125
0.158
0.188
0.302
0.420
0.468
0.495
0.500
0.500
0.500
0.500

g(2)
mi

0.00120
0.00160
0.00200
0.00400
0.00800
0.0120
0.0200
0.0400
0.0800
0.120

o0
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X

4

6.0x10

8.0x10*
1.0x107°
2.0x107°
4.0x10"%
6.0x10"°
1.0x10°2
2.0x10° %
4.0x1072
6.0x1072

e}

X

6.0x10"*
8.0x10"*
1.0x10™°
2.0x10"°
4.0x10"°
6.0%x10" °
1.0x10°%
2.0x10"
4.0%x10° %2
6.0x10" 2

(o]

2

TABLE IV.C.3 (Continued)

Third Kind
SEUC)
86.8 0.0094
81.2 0.0265
76.8 0.0495
61.9 0.191
42 .8 0.436
29.7 0.608
14.4 0.811
2.32 0.969
0.0608 0.999
0.00160 1.00
0 1.00

Fourth Kind

p(2) o{4)
11 ol
0.0109 ~0.016
0.0116 . -0.0328
0.0122 ~0.0552
0.0144 ~0.195.
0.0177 -0.439
0.0200 ~0.610
0.0226 -0.812
0.0247 -0.970
0.0251 -0.999
0.0251 -1.00
0.0251 ~1.00

0.121
0.155
0.186
0.323
0.530
0.674
0.842
0.974
0.999
1.00

1.00

g (4)
mi
0.00116
0.00156
0.00194
0.00369
0.00639
0.00827
0.0105
0.0122
0.0125
0.0126
0.0126
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IV. D. The Nusselt Number Relations

As with the laminar case, several of the general
Nusselt number relations presented in Section I.E have been
combined with the appropriate fundamental solutions. The

results are presented in Table IV.D.1l.

IV. E. Relations Valid at Small X

At very small values of X the temperature profile
reaching out from the heated wall has not yet penetrated
beyond the 1éminar sublayer. Hence the region'of interest
is purely laminar, as it was, of course, in Section II.E.,
and the development in that section is applicable here

with only minor modification.

1. The differential equation

Recall from (IV.B.l) that the energy equation for the

entire region between the two planes is

e —
9 [(} + fii P£> Eﬁi} = J%. Qo8 (IV.E.1)
S S =

where u %-ﬁi . (IV.E.2)
™

=

Now in the region of interest here, the laminar sub-
€
layer very close to a wall, 1§-Pr <£ 1. So the energy
equation for this region reduces to

d%6 _ u 06
5172 = Y6 -a—}_—é' (IV.E.3)

This is precisely the equation (III.E.l) used in the laminar
section. But there is an important different here; U no
longer assumes the parabolic %aminar form. Rather, as can
be seen from (IV.B.1l5) when -Tg << 1 and n2 <&
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TABLE IV.D.1

TURBULENT NUSSELT NUMBERS FOR UNIFORM AND
EQUAL WALL BOUNDARY CONDITIONS, Pr = 0.70

Equal Wall Temperatures

Nusselt Number

%1

Re = 20,000 Re = 30,000 Re = 50,000
6.0x10 * 62.7 80.7 114
8.0x10™* 62.2 80.4 114
1.0x10™° 62.1 80.3 114
2.0x107° 62.0 80.3 114

. 62.0 80.3 114

Equal Wall Heat Fluxes

_ Nusselt Number

* Re = 20,000 Re = 30,000 Re = 50,000
6.0x10"* 63.5 82.0 116
8.0x10 * 63.1 81.6 115
1.0x10” % 63.0 81.5 115
2.0x10° 2 62.9 81.4 115

® 62.9 8l.4 115
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i =51 (nd1+ 7y
\
at the lower wall. At the upper wall this becomes

i =352 (F21 -9 (IV.E.4)
This relation is the familiar u' = y+ equation in a form
more convenient for the purpose at hand. Thus the energy

equation becomes

%0 _ Re £ ﬁ 36

(IV.E.5)

for the region under consideration. It is identical in
form to (III.E.7) of the laminar section, differing only
in the magnitude of the constant coefficient; hence the

same similarity solution approach is applicable.

2. The uniform wall temperature case

Here the wall boundary condition is

6-. =1 IV.E.6
7 ( )

The similarity solution sought is of the form

6 = y(£) (IV.E.7)

where 1
-~ 3

E =1nx (IV.E.8)

Combining (IV.E.5), (IV.E.7), and (IV.E.8) yields the ordi-

nary differential equation

,w" + B_§_8§ gzw' = 0 (IV.E.g)
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The solution of this equation is

- Be f ;s
y=6=c |e M52 7 ag v ¢ (IV.E.10)
where Cl and 02 are constants. From the boundary con-

dition (IV.E.6), and from (IV.E.8) one obtains
6,_ =1 (IV.E.11)

Hence, from (IV.E.10)

L =c o 1152 5 g . C
1 ; ./Ei':o

2

The integral in this equation vanishes, as can be seen by
expanding the exponential in a series and integrating term

by term. Thus

c =1 (IV.E.12)

Since © =0 at x =0 (£ = x) by definition,
(IV.E.10) becomes

0=c, e 1527 4 + 1

£ =eo
Since the integral vanishes at € = 0, this can be written
as
© Re f .a
0=c, j’ e 11927 g 41 (IV.E.13)
o :
From Jahnke-EmdeZ®”
1152 - (1152 1 1
f e at <Re f> : r(3> (IV.E.14)
o
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Combining the preceding two edquations yields

i
c = - 3 Re £\’
1 I"(—l—> 1152
3

Thus (IV.E.10) becomes

Y £ _
o) |

Refo_s
1152

do + 1 (IV.E.15)

(o]

where ¢ is a dummy variable. 7
The fundamental solutions sought are ®oo and Gm.

Considering first ®0o? (II.B.10) yields

— 38
Oy = - 4<5:> (IV.E.16)
ll ﬁ:o

Combining this with (IV.E.8) and (IV.E.1l5) gives

©
i

+ _ 1
Re f> g ° (IV.E.17)

12
oo P(l) 1152
3
Hence
L

s - X
Re f - 3
4.479 (TIB—E> X (IV.E.18)

dD00

This fundamental solution holds for both cases one and
three in the region near x = 0 and a unity temperature
wall.

Gm is now found by performing the integration indi-
cated in both (IV.C.5) and (IV.C.16).

X
6, =2 j o, dx (IV.E.19)
o
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So in this case

= Re £ —s
Gm >(1152 (IV.E.20)
Thus
1
& 2
_ Re f -3
Gm = 13.44 (TTEE (IV.E.21)

This fundamental solution, like the one preceding, holds

for both cases one and three.

3. The uniform wall heat flux case

In this case the wall boundary condition is

Do = 1 (IV.E.22)

From (II.B.15) it is seen that this is equivalent to

é?_-) - -1 (IV.E.23)
aT] T—]_O

Here the similarity solution is of the form

s
2% y(€) (IV.E.24)

D
i

where

1
e =7%x ° (IV.E.25)

Combining the above two equations with (IV.E.5) yields the

following ordinary differential equation

i R f R f —
" o+ _%Z éz'w' - '——g—'é-z e’w = 0 (IV.E.26)
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The solution of this equation is

_Re f ga
e 1152
¥ = C_ € dae + C2€ (IV.E.27)

1 62

where Cl and C2 are constants. Integrating by parts,
the above becomes

Re f
&3

_ _ Re f &3
= 1152 Re f 1152
Y o= cze - cl e - =387 C gfg daé (IV.E.28)

Introducing (IV.E.24) yields

1 _Re f £ _Re f =
o = g3 ng _ Cl e 1152 _Re f . gj[g 1152 ae

384

(IV.E.29)

Applying the boundary condition (IV.E.23), and employing
(IV.E.25)

2 i ce =.1
3ﬁ>ﬁ= {EE £=o . Z (IV.E.30)

In arriving at this condition, use is made of the fact that
the integral in (IV.E.29) vanishes at £ = 0, as can be
seen by expanding the exponential in a series and integrating

term by term.

By definition 6 =0 at x =0 (£ = ©), so (IV.E.29)

becomes

_ Re f &5
_ 1- Ref .- 1152
0"4““384C1”f€e ag
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So

c = - - (IV.E.31)

From Jahnke-Emde

) _ Re £ &3 g—

1152 1152\ 1 2
[ £ e aE = (%3 f> F 1"(-3—> (IV.E.32)
(e}

Hence

c = l (IV.E.33)

Re f 2
1152> r (§>

And (IV.E.29) becomes

a1 _ Re f gs
o = 3> _%€+ 1 o 1152

£ _ Re f o3
+ Re £ g.j' g e 1152 ;9 (IV.E.34)

where o is a dummy variable.
Since ©O_  occurs at n =20 (6 =0), the fundamental

solution is

1
6 = 11 z° (IV.E.35)

oo 1
3
Re f 2
4 (1152> P<§>

Evaluating the cénstant yields
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Y

ey
3

)
_ Re f -
Goo = 0.1846 (1152> X (IV.E.36)

Gm for this case follows directly from energy balance
considerations (see (IV.C.12)).

Qm = 2x (IV.E.37)

These fundamental solutions hold for both cases two
and four in the region near X = 0 and a unity & heat-
flux wall.

The limiting fundamental solutions derived in this
section are indicated by the dashed lines on the fundamental

solution curves in Section IV.G.

4. The Nusselt number relations

The Nusselt number relations for very small values of
x follow from the preceding developments of this section
and the results of Section II.E.

a. Case one

At very small x the temperature profile has not
propagated to the opposite wall, so @éi) = 0. Hence
(IT.E.5) becomes

q)(l)
Nu_ = L0 , (IV.E.38)

o t.,. -t
1 - o (1) [l +—<—l55———-9iﬂ

mo t -t

WO e

Introducing (IV.E.17) and (IV.E.20) there follows

1
= . : (IV.E.39)
© I1<%> J% twi = Te -
" X ~-3171+ (-—~————~— X

Tt -t
3
Re f
12 (1152)

Nu

wOo e
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So

nu_ = . , 1 (IV.E.40)

- ' X t -t
Re f -3 wi, e -
0'2232‘<iﬁfﬁf> x -3 {l + (;?——f:fg;jﬂ X
x ~ TwWo e

For most wall temperature ratios, the second term in the

denominator is negligible compared to the first.
b. Case two

Here Géi) = 0 at very small X, so (II.E.7)

becomes
Nu_ = 1 - (IV.E.41)
© (2) (2) Twi
8 - 6 1+
00 mo q&o
Combining this with (IV.E.35) and (IV.E.37) yields
= 1 .
Nu = (IV.E.42)
(0} 1 no"
1 -3 (T qwi> -
X =211 4+ —/x
% Lo
Re f ’g)
4 (1152) r (3
Or
= 1 ,
Nu_ = (IV.E.43)
o] _ i 1
2 * "
Re f -3 qwi -
0.184¢6 <1152> X - 2 (L + q‘;;o> X

Again, the second term in the denominator is normally

negligible.

¢. Case three

In this case @é;) = 0, and (II.E.9) becomes
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(13(3)
Nu_ = (IV.E.44)

° ’n
1 - 9(5) 9(4) i k
mo - t

Introducing (IV.E.l17), (IV.E.20), and (IV.E.37) yields

1
B - x
Re f)e -~ 3
2 p.4

Fl<2%._> (115

Nuo = T ) Dh (IV.E.45)
3 = " —
(Re f> 25 ik )=
l) 1152 tWO - te
Or
L 1
) -
4.479 lﬁ’sg) g °
Nu_ = ' (IV.E.46)
% 2 Dh
s £ w41
e £\ -3 Tei &\ -
1 - 13 44(1152> X - 2 T _— X
WO e
d. Case four
Here Géi) = 0 at very small X, so (II.E.1l1l)
becomes
Nu_ = (IV.E.47)

° gla) | gle) _ 9(5)< >
OQ mo
qWO

Combining this with (IV.E.35), (IV.E.37), and (IV.E.20)
gives
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o :
o - =
1 §3 - 2% </ twi te 2

% F (l) 1152 ) .].).b.

4 (Re £ 2 %o &

(IV.E.48)
Thus

Nu = 1
i | 2
3 = Wi - t ]
Re f -3 Re -
0.1846 <‘m—2:> X -— 2X - 13. 44( 152> h X
(IV.E.49)

IV. F. Relations Valid at Large X

As was the case for the laminar flow counterparts, at
large values of X the infinite series in the turbulent
fundamental solution expressions vanish. The term remaining
in these expressions is the fully developed solution; it is

the subject of treatment in the present section.

1. The fully developed fundamental solutions

These expressions are obtained in each case by setting
the infinite series in the corresponding fundamental solu-

tion in Section IV.C equal to zero.

a. Case one

o) = (1) o

00 ii

(1) = g(1) o ¢
io

O.l
de (l)
ol1) = (1) o 4 —£4
00 11 d -
¥ /o
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b.

C.

e(l) -
mo

Case two

G(E)
00

@(?)
ol

9(2)
mo

Case three

(1) = _ 4 fd
10 -
dy §=-l
(1)
40 s
y=-1 dy y=1
() _ 1
Gmi T2
= eéi) = 2% + s(1)
= 5(2) = 2% 4+ s(-1)
10
- o(2)
=07 = 1y
= ¢{2) = o
10
= ol2) < 2%
mil
ole) = gla) =
[e]e] 11
ple) = gla) =y
[0} 10
ale) = gls) = o
o0 1L
ale) = o{2) = ¢
o1l i0
9(3) - 9(?) =1
mo mi
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d. Case four

(¢) - p(a) ()
eo; - ei; efg (l)'

pl#) = gls) =g
ol 10

al2) = gls) -

oo ii
ole) = ole) o
ol 10

9(4) = 9(4) = 9(4)
mo mi mfd

The preceding fundamental solutions for which no numer-
ical values have been assigned are functions of Reynolds
number and Prandtl number. They were evaluated numerically
by the method discussed in Section IV.G, and are presented
in Figures IV.B.7, 8, and 9 and Table IV.B.l.

2. The fully developed Nusselt number relations

The fully developed Nusselt number relations for tur-
bulent flow follow from the preceding results and those of
Section II.E. As in the laminar case, the fully developed
Nusselt number relations are valid at smaller values of x

than are the fully developed fundamental solutions.
a.” Case one

Here one obtains

J (IV.F.1)



Thus

i ™ Lo
9(1) ' _<two - te>
e (IV.F.2)
l-( wi e)
t -t
8 WO e’ |
Therefore, when t . # t _,
wi WO
(1)
= defd
Nu = 8| —= (IV.F.3)
dy 1—,:1

This Nusselt number is plotted against Reynolds number for
a Prandtl number of 0.70 in Figure IV.F.1l.
When twi tWo (IV.F.2) is indeterminate and the

Nusselt number must be evaluated by a limiting process, as

was carried out for the corresponding laminar case. Com-.
bining the appropriate Nusselt number expression of Section

II.E with the appropriate general fundamental solutions of

Section IV.C,

one obtains

2 -1622% = -167\2%
I t
}: CnYn (1)e - CnYn (-1)e
Nuo - :n:o . n:o =
c -1622x c_ - ~-167%x
n ., n n ..
Z — Y (1)e - Z — Y!(-1l)e
A2 on A2 n
_n=o n n=o n )
As X becomes large this expression approaches
' - [ -
_— [cory (1) - c vy 1]
o Co Co
— ] e — t
22 Yo(l) 52 Yo( 1)
o o
Thus
= 2 =
Nu 4%0 when tw1 two (IV.F.4)
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A plot of this Nusselt number is given in Figure IV.F.l.

b. Case two

Combining (II.E.7) with the appropriate fully developed
fundamental solutions in Section IV.F.l yields

1
Nu_ =
(o]
2x + S(1) + [2x+ S(~- l)] (q‘; - 2% :¥l>
(o] O
(IV.F.5)
Thus
_ 1
Nu_ = o (IV.F.6)
S(1) + S(-1) q&}l>
(0]

This fully developed Nusselt number is plotted versus
Reynolds number for equal wall heat fluxes in Figure IV.F.l.

c. Case three

For this case

D
w _h
O Fwix
two B te
Nu = o) (IV.F.7)
no _h
l - l - 6(4) qu k
Meg two -t
Hence, when ", #E 0 Nu_ = 1 (IV.F.8)
’ q’Wl 4 o) 9(4) M
Meg

When q&i = 0 (IV.F.10) is indeterminate and the entry
length expressions must be employed. From (II.E.9) and the

fundamental solution expressions of Section IV.C
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Nuo = (IV.F.9)

for the case of q&i = 0. As X becomes large this expres-

sion approaches

4 C Y'(1)
Nu = 2.0
1l "o
5 2 Yo(l)
©
Hence, when q&i = 0, Nuo = 8 %i (IV.F.10)
d. Case four
Here one obtains
Nu_ = L e (IV.F.11)
(4) () wi e
fd w _h
qwo k
1
H h " 0 N = IV.F.12
ence, when q@ £ 0, u 6(4)(1) 6(4) ( )
fd Meq
And when q&o = 0, Nuo = 0 (IV.F.13)
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IV. G. 8Solution of the Sturm-Liouville Equation

1. General considerations

Recall from Section IV.B.5 that the Sturm-Liouville
equation resulting from the separation of variables in the

energy equation is

€ €
4 (1 T Pr> v!| + 228y =0 (IV.G.1)
dy M

For the calculation of the fundamental solutions it is nec-
essary to solve this equation along with the appropriate
boundary conditions to obtain Kn, Yn(—l), Yﬁ(—l), Yn(l),
Yﬂ(l), and Cn for the four fundamental cases. As in the
laminar study, the equation is attacked in two different
manners, depending on the value of the index n.

For the lower values of n the equation is solved
numerically, and the eigenfunctions are determined through-
out the interval between the planes. For the higher n
range the WKBJ asymptotic solution is again employed, and
only the values at the walls are obtained; but of course,
these are sufficient for the calculation of the fundamental
solutions.

Unfortunately, it was found that the asymptotic solu-
tions are not valid at the very low values of n as they
were for the laminar case. It appears as though the numeri-
cal solution must be employed for n 1less than about ten.
Thus, since the present study was limited to calculations
for n £ 2 for most cases, it was not possible to use the
asymptotic solution results in the calculation of the
fundamental solutions, and the series converged satisfac-
torily only for relativély large values of X, as evi-
denced by Figures IV.C.1l, 2, 3, and 4.
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2. Solution at the lower eigenvalues

Here again, the iterative procedure based on the method
of Berry and de Prima is employed. The eigenvalue correc-
tion is carried out precisely as described in Section
I1I1.G.2, except that in this case the weight function
appearing in the Sturm-Liouville equation and the normaliza-
tion expression is the turbulent velocity profile repre-
sented by u(y). The fact that it is not available as an
analytic expression is immaterial in the numerical computa-
tions.

Because the widely differing flow characteristics in
various regions of the interval make attractive a numerical
integration scheme employing variable step-widths (as dis-
cussed in Appendix C), Simpson's rule is not’used in the
normalization factor and eigenconstant calculations.
Rather, the same predictor - corrector scheme used in the
eigenfunction calculations is employed.

The computations were performed on a Burroughs 220
Electronic Digital Computer at the Stanford University
Computation Center. Further details of the computational
procedure are given in Appendix C.

The eigenvalues and pertinent combination of constants

are presented in Table IV.G.l.

3. Solution at the higher eigenvalues

As with the laminar case, the WKBJ approximation may
fruitfully be applied to determine asymptotic expressions
for the higher eigenvalues and eigenconstants. The devel-
‘'opment proceeds along the same lines as that in Section
ITI.G.3.

From (IV.B.21) the differential equation of interest

here is
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4a hY'> + N3y =0 (IV.G.2)
- n n n

dy

€ €
where h A 1 + 2 _H (IV.G.3)

= Vv €

M

Now letting Y _ = eI (¥) (IV.G.4)

one obtains from (IV.G.2)

hg" + hg'® + h'g' + xiﬁ = 0 (IV.G.5)
Seeking a solution of the form

g =2nNg, + 9, + };lgz + .- (IV.G.6)

this expression is combined with its predecessor, and coef-

ficients of like powers of xn are equated, yielding

] =+ 3 ﬁ
9 T iy 5 (IV.G.7)

g, = - ln (\/hg(‘)> (IV.G.8)

and

Proceeding as in Section III.G.3, there follows

Y - Y =
, /U a= . 1/ u =
l%n j' E-dy -1xn j’ E—dy

o

. o
vy =8¢ t He (IV.G.9)

X
2z
2 .E>

h(hv

Changing this WKBJ approximation to a more convenient form
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Y =
a .-
G, cos | A j’WJt;jdy - ¢
0

Yn = - T (IV.G.10)
= 4
2 u
h(‘f{>

Since these expressions are going to be used near the

walls of the channel, it is advantageous at this time to

exploit the fact that certain simplifications occur in the

behavior of u and h in these laminar sublayer regions.
Rewriting (IV.B.7) in terms of y+ rather than vy,

it can be seen that for small y+

€ 2 4
M _<’K +
— ==\ vy (IV.G.11)
v A+
Hence
€ 4
M K :
e (’;:> yh z* (or %) (IV.G.12)
A
Utilizing (IV.B.1l0)
€ 2 4
M [<K+f > RZ } z* (or %) (IV.G.13)
v A716

E .
Thus -7% approaches zero near the walls. To establish a

feeling for the manner in whic% it does so, note the curve

in Figure IV.B.3. Now since Eﬁ' and Pr are of the order

of unity or less, it follows that h approaches unity at
the walls.

Directing attention now to u, it can be seen from

€
(IV.B.15) that in the wall region where -1¥ <« 1 and

z2 << z
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u = 55525- (or Re8f , depending on the wall) (Iv.G.14)
a. The inner wall
Near the inner wall y — -1. As in the laminar case
the substitution y = -1 + z is made. The differential

equation, (IV.G.2), thus becomes

4a 3 25y =
— hYn> + A28y =0
which, in the light of the preceding development, reduces

near the walls to

" 2 Re £ =
Yn + %n _ET—'ZYn 0
Letting
s 4/ 2L (1v.G.15)
this becomes
YY" + A25%zy_ =0 (IV.G.16)
n n n
where Y = Yn(z). This is a form of Bessel's equation

having the solution

2 2 Y 2
= 2 2 2 2 2 2
Yn = G:.Z J.l_<3 67\nz >+ le J_ }_<3 67\nz > (IV.G.17)

3 3

For large xn this has the asymptotic form

3 3
2 2 év_r_> ( 2 2 _7.T_>
3 Gl cos (; 6%nz - 13 + Hl»cos 3 5xnz - 13

n TA

11
n > 2
o z

(IvV.G.18)
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Returning now to the WKBJ form (IV.G.10), note that

Yy -1 Yy —
/8 g5 = 9 g5 3 45
j T W f\/;dy+f\/:dy
° re) =2
Z Y
= - v+ j’ 5z° dz
Fo)
where
A T 4
v 2 - H-dy (IV.G.19)
o
Thus

Note that v must be evaluated numerically for each partic-
ular value of Reynolds and Prandtl numbers. The results of
such an evaluation are to be found in Table IV.G.2.

The equation (IV.G.10) then becomes near the inner
wall

3
2 2
_ G, coslrxng-éz - (%ny + ¢>}

A
4
d =

Y

n (IV.G.20)

V3 o]

In order to patch the two expressions (IV.G. 18) and (IV.G.20),
it is apparent that

G = — (Iv.G.21)

and
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51 T -
Gl cos I§-+ Hl cos Tgﬁ cos (vkn + ¢> (IV.G.22)
.. 57 . T _ s
Gl sin 75 + Hl sin 55 = sin (vxn + ¢> (IV.G.23)

As in the laminar case, ¢, Gl, and Hl will be determined

later from boundary condition considerations.

b. The outer wall

Near the outer wall y — 1. Making the substitution

y =1 - £, the differential equation becomes
n 2e2 -
Yo+ 7\nc5 CYn 0

where Y = Yn(C). Again, this has the solution

1 3 1 3
_ 2 2 2 E) 2 2z
Y, =Gt Ji<3 6N, 8 >+ H ¢ J__ A(3 67, ¢ > (IV.G.24)
38 3

And for large %n

(IvV.G.25)

Here the integral appearing in (IV.G.10) becomes

Y — R— -

A/ U .= A /U .= A/ U .=
] ':de f 'E-dy+ j ‘}—ldy
o o 1

€ 1

=fv-f st® at
o}
3
=v——23-<51:2
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So

— cos [7\ -—5& (xv—@]

Yn = s .y (IV.G.26)
n 2,4
6 ¢
Then from the above and (IV.G.25)
5T -

Gg cos T§-+ H2 cos 75 = cos (&xn - é) (Iv.G.27)

. 5T v T o o
G2 sin T§'+ H2 sin 5 sin <v%n - ¢) (IV.G.28)

Now the four sets

C. Case one

of boundary

conditions will be introduced.

Here the boundary conditions are

Y (-1)

Y (1)

0

0

Applying (IV.G.1l7) at the inner wall it is found that

H 0 since
1
Y
2
z

(Iv.G.23)

Ccos 12

sin (&%n + ¢>

So

sin (&%n + ¢ -

2
J_ N <—3' (57\n
3

does not approach zero with =z.

- sin

2
2
z

Then from (IV.G.22) and
15 cos (va, + 9)
ST\ _
iz 0] (IV.G.29)
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This requires that

YA, + ¢ _%: + o, n=0,1,2, - (IV.G.30)

Without losing generality, n is taken to be zero. Then
from (IV.G.23) and (IV.G.30)
G. =1 (Iv.G.31)

1

Thus, in the region near the inner wall

1 3
_ =22 E)
Y =z J_l_ (-3— oA, 2 > (IV.G.32)
3

At the outer wall H2 = 0 for the same reason that
Hl = 0 at the inner. Thus

sin (f\/?\n -9 -22)=0 (IV.G.33)

Combining this result with (IV.G.30) yields

5\ 1
7\n=(2n+§'>z"_?, n=20,1, 2, - (IV.G.34)

Also

¢ = (-1) " (IV.G.35)

So near the outer wall
Y 8
- n ,=2 2 2
Yn = (=1)" ¢ J;_(} 6knC :> (IV.G.36)
3

Now the expressions needed for the determination of
the asymptotic eigenconstants must be derived. From
(IV.G.32)
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3Y -3 E )
(____n> = z 2J1 (%— 5)\n22>— 5A ZJ4(§ 6N, 2 2> (IV.G.37)
ay §'—)—l -5— -3—

L
-3 I
As z -0, 20 =0 and =z J — Lt
2 Y 3 F(fl.>
3 3 3

So

l
a 4
3) 3
( > i) 7\n (IV.G.38)
3

Noting from (IV.G.32) that at y = -1, Y vanishes for

7\

y=-1

|
o

(IV.G.39)

Shifting attention to the outer wall, from (IV.G.36)

dY -+ £
<.__1'_1.> = (_1)n+l ¢ 23 ( 5n ¢ >- SNLT, ( SN ¢ >
oy /5 Y

y=—1 )
(IV.G.40)
So at the outer wall
1
3 X
( > 1)t L 3)> 22 (IV.G.41)
n .G.

Note that at this wall Yn = 0 only for A =A_, so

oY
1 must be computed from (IV.G.24).
OA

165



oY, - ) z | 3 : ,
57;- Gg 8?; ¢ qi_ ¥ H2 J_ g J_‘L
3

V-1 3 n
z 3G < oH

+ g 24+ t°g 2
1Ry _ 1 0%

) s I

The first three terms vanish as { — 0. Then since

. 51
o _sin(ny -6 -5
2 sin (— 13r-
(from (IV.G.27) and (IV.G.28)),
OH n+a
2 - 4
5= = (-1) —X (IV.G.42)
7\n V 3
So
oY, n+1 -+
n = 4vy 3
(ﬁ;) (-1) Yy A, (IV.G.43)
y=? 3%° r (£
Inserting the above expressions into (A.9) yields
il
6.3 2
_ nt1 3 90 F(j -y
Also
2
2 2 1
P (D) -3
. - nti § 3 3
362y" 3
2 _ 2
_ n+1 -1.3 3
= (~1) 0.63134 v 6 %n (IV.G.44)
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and

2
2 2 N
, _ 58 F(‘g‘) -y
c Y'(1l) = A
n n 1 f‘(é> n
6 3
3 2y
2 _ 2
= -1,8, B
= 0.63134 y '8N (IV.G.45)

d. Case two

Here the boundary conditions are
! =
Yn(—l) 0
1 =
Yn(l) 0

Differentiation of (IV.G.17) gives

dY 5 3 8
(Y 2,, 2 2,
(—a—_——> = Gl 57\nZJ 2 (3 67\nz > - Hl 67\1’12J_g_ 3 67\nz >
Y §-*—1 ) 3

(IV.G.46)
To satisfy the inner wall boundary condition
G =20
1
Then from (IV.G.22) and (IV.G.23)
. T =
sin <&%n + ¢ - Tf) =0

from which

¢={-T-2—_ry7\nj'_n7r’ n = O, l, 2, e (IV.G.47)
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Again n 1is set equal to zero. It follows that
H =1 (IV.G.48)

So near the inner wall

1 3
) 2 B
Yn z=J &.<; 5xnz > (IV.G.49)
T3
A similar condition exists at the outer wall, resulting
in

sin (’y')\n -9 —I7I2—>= 0
Hence

, 1\
)\n=(2n+§->'21_—;/-, n=20,1, 2, «-- (IV.G.50)

As before, this result leads to
n
Hz = (-1) (IV.G.51)

So near the outer wall

1 3
_ n 2 2 2
Yn = (=1) ¢ J— _1_('5 Mné_: > (IV.G.52)
3

In order toadetermine the expression for the eigen-
Y
constants, -§:<;§XE must be evaluated at both walls.
oy n

Differentiating (IV.G.49) yields

> [ ¥n 5 2 2 2 2 2 s
S\ 3 623 | 5 o0 2 >+ T 05N 2 I | F 002 >
¥ n 3 3

7 -2

(IV.G.53)
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At z = 0 Dboth of these terms vanish, so

3 oY
—l 7
By n §="l

Near the outer wall Gg

aY &
d 2 2
dy ( > ac C ” (.3- ot >
y—*l
J

Now since

is a function of \;

- sin (112 A ¢>

it follows that

sin (— %

Thus, at the outer wall

3 oY
L 872
n §=l

= ( l)n+l ___JL.___ xa

3 r (%)

Now from (IV.G.49) and (IV.G.52)

¥, (-1)

thus

(IV.G.54)

(IV.G.55)

(IV.G.56)

(IV.G.57)

(IV.G.58)



Thus employing (A.10) yields

= 4
0™ 2o (), ®

G
i

n 2
8fyc5B
Also
7
L 4 .
nt+1 36 F(“) "'Z_
= 3
CnYn(-l) = (-1) 5 A
¢r(3) "
3 3
8vS
2 5
nt+i _l"’E"—é'
= (-1) 0.29699 v & %n (IV.G.59)
and
z 4 s
C Y (-1) = 3° P(§> _ e
SR TR
3 3
8vo
2 _5
= -1, 8.7 B
= -~ 0.29699 v =% %n (IV.G.60)

e. Case three

Here the boundary conditions are

Y'(-1) =0
Y(1) =0

Proceeding as before it is found that at the inner wall

G =20
1
= T _ -
¢ 12 rW\n
H =1
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Thus

i 3
_ =2 2 2
Yn Z J— 1 \3 6an \>
3

(Iv.G.61)
The conditions at the outer wall lead to
sin(w\n - @ —%721 =0
So
Ay = (2n + 1) {— , n=0, 1,2, --- (IV.G.62)

For the region near the outer wall it is found that

1 3

_ n =2 2 2

Yn = (-1) ¢ JQL<E§ 6xnC ‘> (IV.G.63)
3

, . \
Now, Yn(l)aYls given by (IV.G.41),

Yn(-l) by

(IV.G.57), and ﬁﬂ by (IV.G.43); thus from (A.1l)
y=1

there results

i 1

n+ai &.3

c. = (-1) 36
n

-2
2y r (%) 7\n °
Also

VT

_ +1
CnYn(—l) =

-1yt 3

ER
,%n

-2

ot -1, -1
(-1) 0.86603 v %n (IV.G.64)
and
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'
CnYn(l)

mw
11+

NN

Whibjwito

0.63134 &8 y 2

v

f. Case four

Here the boundary conditions are

Y(-1)

1
o

Y'(1l) =0
At the inner wall it is found that

H =
1

o

= 31 _
¢ =73 YA,

Hence

From the conditions at the outer wall
. T -
sin (&%n -9 —-I§>‘— 0
So

= I
7\n"' (2n+ l) 4,Y’
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In the region near the outer wall there obtains

e 3
— n ,2 2 2
Y o= (-1)" £°7 _1‘(3 6, ¢ > (IV.G.68)
)
Now, ( -1) is given by (Iv.G.38), Yn(l) by
(IV G.58), and 5 < > by (IV.G.56); so (A.12) yields
Y
n+ 3l -2
- 4 3
Cp = (1) 3) M
8765
Also
A
n+1 3% _
tf_ - _ 2 1
CnYn( 1) (-1) 8y 'n
n+1 P,
= (-1) 0.21651 v hn (IV.G.69)
and
7
3° F(%‘> -3
cnYn(l) - > 2N ™n
5 r(3)
8vd
2 _ 53
-1. 8. 7 3 ‘
= - 0.29699 Y '8 (IV.G.70)

The numerical results of this section are presented in
Table IV.G.l. The cautioning remark on page 90 in the
laminar section regarding the normalization of the eigen-

functions also applies to this section.
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TABLE IV.G.2
TURBULENT WKBJ PARAMETERS

Pr Re o) Y
0.01 20,000 4.3246 0.98610
0.01 30,000 4.9143 0.98294
0.01 50,000 5.8529 0.97488
0.70 20,000 4.3246 0.24116
0.70 30,000 4.9143 0.21240
0.70 50,000 5.8529 0.17906
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V. EXPERIMENTAL WORK

As part of a continuing project in the area of non-
isothermal wall heat transfer, a parallel plates test facil-
ity was constructed in the Stanford University Mechanical
Engineering Laboratory. For the present study the facility
was used to provide a check on the several assumptions
embodied in the turbulent analysis, and to test the super-
position technique. The test facility is described in
Section V.A and the experimental results are discussed in

Section V.B.

V. A. Description of Apparatus

l. General

The parallel planes tést apparatus consists of two
parallel copper plates which can be water heated (or cooled)
from the backsides, a system to supply and meter air passing
between the plates, a water heating system, and thermocouple
circuitry for plate temperature and heat-flux measurements.

The plate spacing and air flow rate can be varied such
that Reynolds numbers ranging from 500 to . 100,000 can be
achieved, and the plates can be heated such that the effects
of asymmetric heating and longitudinal variations in wall

heat flux or temperature can be studied.

2. The test section

The infinite parallel planes are approximated by two
parallel vertically mounted plates, each 49.25 inches in
the air flow (vertical) direction and 24 inches wide. The
spacing between the plates can be varied between 0 and 6
inches by sliding them along their four supporting shafts,
on which they are ball-bushing mounted; this not only allows
the plates to be separated for polishing, but also provides
flexibility for varying the hydrodynamic entry length and

for future rectangular passage studies. Figure V.A.l shows
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the parallel plates rotated 90° to a horizontal position
and spread apart for polishing.

The air is contained between the plates by two Plexi-
glas spacers running the length at each edge. These
spacers are 0.5 inches wide and of a thickness equal to the
desired plate spacing. A rectangular groove running the
entire length is machined into the two faces of each to
provide for a linear "O" ring seal.

A two-dimensional Plexiglas nozzle provides the tran-
sition between a large plenum chamber and the plate. channel.
Both plenum and nozzle are described in Section V.A.3.

Each plate is composed of 48 1- by 24-inch copper
cells, each separated from its neighbors by a thermal insu-
lator consisting of a 0.031- by 24-inch strip of 25-percent
plasticized Kel-F plastic, as shown in Figure V.A.2. The
thermal conductivity of this plastic was measured and found
to be 0.08 Btu/hr-ft®-°F/ft. The 24 cells forming one end
of each plate can be heated (or cooled) individually to any
desired temperature between ambient and 180° F by passing
water through them. The 24 cells forming the other end
cannot be heated, and constitute an adiabatic wall. The
plates are mounted on the four supporting shafts such that
the heated ends are always opposite each other, but the
plates may be released from the nozzle, and their bearing-
mounted supporting frame (see Fig. V.A.3) rotated 180°, so
that tests may be conducted in either of two ways; in one,
the air first passes through the adiabatic section so that
the velocity profile becomes established before the heated
section is reached (the thermal entrance length problem),
and in the other the air flows from the nozzle directly
into the heated section (the hydrodynamic entrance length
problem). The present tests were confined to the former

arrangement.
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Parallel Plates in a Horizontal Position for Polishing

Figure V.A.l.
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Each cell is an epoxy bonded lamination of a 0.5- by
1.0-inch rectangular OFHC copper tube of 0.062-inch wall
thickness, three 0.0156-inch-thick strips of Bakelite, and
a 0.125-inch~thick strip of OFHC copper, as shown in Figure
V.A.4. The cells are mounted so that the copper strip faces
the air channel. A 30-gauge iron-constantan thermocouple
is imbedded near the center of each copper strip, the lead
wires being fed out to the cell end in a. shallow groove
milled in the internal face of the strip. Thus the plate
wall temperature can be measured at 48 points along its
flow length. The heated cells each have a Beckman and
Whitley, Inc. thermopile type heat flow transducer mounted
in the center Bakelite lamination. Since the thermal
resistance network is such that essentially all the heat
transferred between air and copper strip also passeé through
the Bakelite to (or from) the copper tubing, the heat flow
transducers enable the wall heat flux to be measured at
24 points along the heated half of each plate.

During operation each copper strip is essentially iso-
thermal, but each may be maintained at a different tempera-
ture because of the Kel-F insulation between them. The
temperature levels of the heated cells are controlled by
varying the temperature of water streams passing through
the rectangular tube portion of them. This water is intro-
duced to the cells through a 1/4-inch brass tube soldered
in each end; the ends of the unheated cells are blanked off
with brass plugs.

The back side of each plate (composed of the rectangu-
lar copper tube side of the cells) is insulated with a
3-inch-thick pad of Fiberglas. Additional insulation is
packed around the plate edges during operation.

During the'construction of the plates each completed
bonded cell assembly was machined flat on all sides. They

then were lined up on a plane table, rectangular tube side
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down, and bonded together with an epoxy resin. The sepa-
rating strips of Kel-F plastic were sodium etched to accept
the bond. The resulting.plate was then bonded to two
1/8-inch silicon rubber pads running its length, and then
to two aluminum I beams, which were, in turn, bolted to two
aluminum channels containing the ball bushings. for shaft
support. This assembly is shown in Figure V.A.2.

The resulting rigid structures were clamped to the
table of a large vertical boring mill, on which the entire
copper strip surface was machined flat. This suspensive
process was followed by a period of hand sanding and polish-

ing until a mirror finish was produced.

3. The air system

The air system consists of an 800 cfm. maximum flow
rate, 30-inch HZO maximum static pressure Buffalo centrifu-
gal blower, a flow regulating valve, two parallel orifice
metering sections, a screened. plenum chamber, and an adjust-
able two-dimensional nozzle for introducing the .air into
the test section between the two parallel plates. After
passing up between the plates the air is discharged into
the laboratory.. The air system is shown in schematic form
in Figure V.A.5. The blower and metering section portion
is shared with a companion apparatus, an annular passage,
which is described by Lundberg, et al.®?

The two metering sections with their flat plate ori-
fices were constructed according to ASME stahdards. Each
can be equipped with one of two orifices. The pertinent

dimensions of the two alternative sections are as follows:

Duct Diameter (in.) Orifice Diameter (in.) B = d/D
6.367 4.225 0.664
6.367 1.910 0.300
1.498 0.824 0.550
1.498 0.375 0.250
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Orifice upstream static pressure is measured by a
30~inch vertical water manometer, and orifice differential
pressure by one of three parallel devices, a 1l6-inch verti-
cal water manometer, or an inclined oil manometer having a
range of either 1 or 5 inches of water. The differential
manometers were adjusted from time to time by comparison
with a micro-manometer, and the entire metering system was
checked out by running it in series with a laboratory
portable nozzle tank with a well established calibration.

A total air flow range from 1 to 750 cfm. can be measured
with this metering system with a probable uncertainty of
about +1 percent.

The plenum chamber and nozzle assembly is shown in
Figure V.A.6. The chamber consists of a reinforced, sealed,
plywood box, 24 by 24 inches, by 42 inches in the flow
direction. Three screens are used to insure a uniform
distribution of low turbulence air at the nozzle inlet.

The two nozzle halves themselves form the top of the plenum
chamber, being attached both to it and to the parallel
plates.

Each nozzle half is made from a 1/2-inch plate and
quarter circular cylinder of Plexiglas. The plate has a
thin neoprene flap bonded around its periphery on three
edges and the cylindrical nozzle piece on the fourth.
During operation the flaps are clamped to the plenum cham-
ber top, thus providing a seal. A linear "O" ring in a
rectangular groove provides the seal between the top of the
‘nozzle and the bottom edge of each parallel plate. End
blocks are positioned between the nozzle halves at each end,
and duct-seal putty is used to fill any remaining cracks.
The entire air system was checked with soapy water for

leaks before operation.
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4. The water system

The heated cells of the parallel plates are heated (or
cooled) by a stream of steam-heated water passing  through
the rectangular tubing. There are 48 such streams in the
system, one for each heated cell. The heart of the system
is a 48-channel temperature regulatdr consisting of 48
steam-water mixing sections designed to minimize wvibration
and hammer (see Figs. V.A.7 and V.A.8), and 48 fine-control
needle valves to regulate the steam flow into each mixer
and hence to regulate the water temperature leaving each
mixer. The hot water is carried to the two parallel plates
through 48 1/4-inch polyethylene tubes.

After passing through the heating cells of the plates
the water again enters a bank of polyethylene tubes which
carries it to a collector trough, into which it is ejected
in 48 horizontal jets. These jets arc downward and impinge
on the flat Plexiglas bottom of the trough, and, since the
point of impingement is related to the flow rate in each
tube, the trough serves as an effective substitute for 48
individual flow meters..  The flow rate in each tube must be
at least 1/2 gpm. to ensure a negligible water temperature
change through the heated cells. From the collector trough,
the water drains to a sewer.

On the upstream side of the temperature regulator, the
cold water is supplied by a centrifugal pump. It is drawn
from a 30,000-gallon sump located beneath the laboratory,
and filtered before entering the mixing sections in the
temperature regulator. The sump level is constantly main-
tained from a city water supply.

The regulator steam is supplied at 40 psig by a
45-horsepower boiler located near the test apparatus. The
steam passes through a strainer and a centrifugal steam

drier before being introduced to the mixing sections.
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steam in from needle valve
(Hoke: No. 4PB-286).

1/4" brass tubing

3/8" x 1/8" x 1/3" copper
A//”'heat exchanger tee
cold water

I T
4

in from - 0
PSS S, """'""’* ]
cold'water - P —4 holes, no. 54 drill
manifold Eo

———Dbrass end plug
1/4" brass tubing

1/4" brass tubing

l

hot water out to
parallel plates

(Note: All connections are soft-soldered.)

Figure V.A.8. Detail of a Steam-Water Mixing Section
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Since the epoxy resin bonds in the parallel plate
structure begin to lose strength at temperatures in excess
of 200° F, an automatic safety device is incorporated in
the water system to insure that water (or steam) hotter
than 180° F cannot reach the plates. This device consists
of several thermostat switches in selected. polyethylene

tubes and a solenoid valve in the main steam line.

5. Electrical instrumentation

The electrical instrumentation consists of a thermo-
couple system to measure plate and air temperatures and a
heat meter system to measure plate heat fluxes. The thermo-
couples used were all made from 30-gauge, glass insulated,
iron-constantan wire, samples of which were calibrated
against NBS thermometers and found to deviate from the
standard tables by a maximum of ip.ZOO;F.throughout the
range of interest. Ninety-six thermocouples are used to
measure plate temperatures, one being imbedded in each cell
as described in Section V.A.2. Seven shielded couples are
mounted in the air stream at the top of the plenum chamber
to measure the inlet air temperature, and several more are
used for measuring air metering section temperatures,
ambient wet and dry bulb temperatures, and inlet water tem-
perature. All thermocouples are referenced to a distilled
water ice bath. .

The thermocouple voltages are read with a Leeds and
:Nbrthrup portable precision potentiometer. They are dis-
tributed to this instrument through a multiple selector
switch arrangement shown in Figure V.A.9. Copper lead
wires run from the selector switch console to isothermal
zone boxes near the thermocouple installation areas, at
which points they are connected to the thermocouple wires.
The zone boxes for the plate thermocouples consist of multi-

pin connectors, since it is necessary to unhook these
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couples to rotate the plates or to free the selector switch
console for use with the annulus apparatus. .Details of the
thermocouple circuit are shown in Figufe V.A.10.

The wiring system for the 48 heat meters is similar to
that for the plate thermocouples, except that no ice refer-
ence junction is used here since the heat meters indicate
Va,temperature difference across a thermal resistance (the
center Bakelite lamination) rather than a temperature
itself. Details of the circuit are shown in Figure V.A.11.

Since the heat meter sensitivities differed somewhat,
a Hewlett-Packard 412A DC VTVM was used to record their
voltage outputs. It was found that the high input impedance
of this instrument resulted in a negligible current flow;
thus it acted essentially as a potentiometer.

All the heat meters were calibrated in place after the
plates were completely constructed and mounted. This was
accomplished with a nichrome ribbon heater arrangement
which effected a measured heat flow through a cell into its
water passage. With this procedure it is believed that the
heat meter sensitivities were obtained with a probable
uncertainty of +5 percent.

A photograph of the thermocouple and heat meter selec-
tor switch console, the manometer board, and the tempera-

ture regulator valves is presented as Figure V.A.12.
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V. B. Comparison of Experimental and Theoretical Results

Several turbulent flow experimental runs were con-
ducted at various Reynolds numbers and with several wall
boundary conditions, and the resulting data are presented
in Figures V.B.1-5. 1In all cases the plate spacing was set
at 0.5 inches. In discussing the data, first some general
remarks pertinent to all runs will be made, and then each
run will be treated individually.

In all cases heat flux predictions resulting from the
use of the fundamental solutions of the first kind are
shown. Use of the solutions of the second kind was pre-
cluded by the fact that they are not known for small-  enough
values of X. 1In applying the fundamental solutions, the
wall temperatures were approximated by steps of x length
5%x107°; thus, in the cases where the wall temperature varies
only slightly the comparison of theory and experiment pro-.
vides a good check on the theory, but in the rapidly varying
wall temperature regions errors due to the step approxima-
tion can occur.

It will be noted that wall temperatures are plotted in
the negative x region; this is because heat leak near the
thermal entry caused several unheated cells upstream of it
to have temperatures other than the air inlet temperature,
te, and this effect was included in the application of the
theory.

By and large, the theory overpredicts the magnitude
of the heat flux by about 10 percent. Since the heat flux
data is felt to have an uncertainty of +7 percent, this is
a significant deviatibn, and, all factors considered, it is
most probable that it is a result of using an eddy diffu-
sivity ratio larger than that actually existing. The
Nusselt number data of Leung34 lends credence to this

hypothesis; he finds good agreement with a theory based on
a constant value of eH/eM = 1.2 outside the sublayers.
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Turning now to the individual test results, Figures
V.B.l and V.B.2 present results for constant wall tempera-
tures which bracket the inlet temperature. Here the theory
predicts the general trend of the data, but overpredicts
its magnitude. Figure V.B.3 treats constant wall tempera-
tures which both lie above the inlet temperature; again,
the data trend is predicted better than its magnitude.

In Figure V.B.4 the upper wall is subjected to a tem-
perature step and then a ramp, while the lower wall tem-
perature is uniform after the step. The comparison at the
lower wall is similar to those of the preceding figures,
but the upper wall comparison seems somewhat better; this
is because the step approximation of the ramp tends to
underpredict, or more precisely, to lag the exact predic-
tion. It is interesting to note that at the upper wall
the heat flux actually decreases for a short distance down-
stream of the step even though the wall temperature is
increasing up the ramp.

Figure V.B.5 presents results for a more complicated
step-ramp combination, and again the lag due to the step
approximation is apparent. Here the heat flux downstream
of the initial upper wall step does not diminish as in the
previous case; this is because the step is less severe, and

the ramp slope is greater.
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VI. CONCLUSIONS

The treatment. of the laminar problem in Section III
is essentially complete; all wall boundary conditions of
interest are discussed (with the exception of specified
wall resistance and wall internal temperature), the solu-
tions are presented with an accuracy quite sufficient for
practical purposes, and the method of use of the solutions
is presented. Experimental verification of the laminar
theory is not included herein, but this can be found in the
work. of Lundberg, et al.®” , whose treatment of the circu-
lar annular passage parallels that of the present study.

As opposed to the laminar work, the treatment of the
turbulent case is really little more than an introduction
to the general problem, and the development of a method of
approach. It cannot be considered complete in that it
applies to only one Prandtl number over a limited Reynolds
number range, and, as discussed in Section V.B, there is
some doubt as to the suitability of the eddy diffusivity
ratio employed. Hence, it is to be hoped that in the
future additional fundamental diffusivity studies will be
conducted, and that the results will be applied to the
problem herein for a wide range of Reynolds and Prandtl
numbers.

Looking back over the fundamental solution results,
it is of interest to note several important X regions for
non-isothermal wall heat transfer. First, it can be seen
that the effects of a wall temperature (or heat flux) step
are completely damped out at an X disténce downstream of
about 10~ ' for laminar flow and about 10 2 for turbulent
(Pr = 0.70). Recalling the definition of x, it can be
seen that for equal Dh and Pr’ the turbulent thermal
entrance length is apt to be about as long, or perhaps

somewhat longer, than its laminar counterpart. Examination
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of the fundamental solutions also reveals that constant
heat flux thermal entrance lengths tend to be about one
half to one order of magnitude shorter than constant wall
temperature thermal entrance lengths.

Comparing the magnitudes of the various io sub-
scripted fundamental solutions with those with ii sub-
scripts, it can be seen that the effects of a temperature
(or heat flux) step at one wall are not apparent at the
opposite wall for an X distance downstream of about 10 2.
for laminar flow and about 10 2 for turbulent (Pr = 0.70).
This propagation delay creates a type of "zone of silence"

above the step.
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APPENDIX A
DERIVATION OF EXPRESSIONS USEFUL FOR EVALUATING
THE HIGHER EIGENCONSTANTS

In this appendix are derived eigenconstant relations
used in Sections III.G.3 and IV.G.3 to evaluate the higher
eigenconstants. These relations are valid for all the
eigenconstants, but were found inconvenient to use for the
lower ones which were calculated numerically from (III.B.22)
and (IV.B.24).

Recall that the Sturm-Liouville equation resulting

from the laminar treatment is
" 2 _ o2 =
Yoo+ Ay <i y‘> Y 0 (A.1)

and that for the turbulent case is
€., €
4 [<1+—54—€ﬁ- Pr> YI'IJ+ 2 Ay =0 (3.2)
dy M m

These equations are of the general form

_q— ! 2 =
d§ (hYn) + 7\ann 0 (A.3)

where for the laminar case
h =1
w=1l-y

and for the turbulent case

€ €

h=1+7}M—I{'Pr
M
we=2 =g
m



Now, from (III.B.22) and (IV.B.24) the general equation

for the éigenconstants is
+1
.[‘ edeYn dy

= _ =2
C, sy (A.4)

2 —
j— an dy-

-1

This expression will now be put in more convenient form for
higher eigenconstant evaluation.
Consider first the numerator of (A.4). Combining with

(A.3) and integrating by parts twice yields

+1 +21
- _ 1 )
- ] 6 £ dWYn dy = ‘K‘rél' [ e £d d (hYA)
-2 -1
+1 +1
= 1 , _ 1 '
S5 efthn 2 J’ efdh ay
n n
-1 -1
+1 +1
= ._;I'_ L] _l'_ '
-2 Qfthn S efthn
n -1 n -1
+1
1 d , -
+;\—2— j Yn—':(hefd) dy (A.5)
n - dy

—-1

Now from (IV.B.25) it is seen that for boundary condition

cases 1, 3, and 4

d

2 (hop) - o
ay fd

So for these cases the integral in (A.4) vanishes. And

from (IV.B.26) the analogous expression for case 2 is
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d < > W
8 (hor ) =¥
d§ £d 8

So for this case the integral in (A.5) becomes

+2

+1
j Y d(he >dy=—-—f andi;
-1

B §

Introducing (A.3) this becomes

+1 +1
a S = 1 _d_'.>-
j’ Y, = <h9éd dy giree j' — (ﬁYn dy
1 dy n -, dy
+1
1
= - hy'
)
8A\n n

-1

But the case 2 boundary conditions stipulate that YE =0

at both walls; hence the integral vanishes in this case too.
Thus, recognizing that h =1 at both walls, it is

seen from (A.5) that the numerator of (A.4) is

+1 +21
v =.J; " '
- f Oeq"¥n W = 3 [ede %fa n] (2.6)
n
-1

-1l

Consider next the denominator of (A.4). To put it into
the form sought, one operates on (A.3). Differentiation
with respect to A, ¥ yields

I:By( >}+27\WY “wwé—

*Herein SN is used to denote g%- .
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Interchanging the order of differentiation

[ (i J ayh
+ 27 wY + X w =0
oy oy 87;

+1
Applying the operator j( Yn dy and rearranging

-1

+2 +1

2 o= 1 d
[ WYndy———ZT Yn":'i: ( :I
n oy

-1 =1

P dY

2 n -
+ j' Yn7\nw F&- ay

-1

Integrating the first term on the right-hand side by parts

twice yields

dy 1Tt
- 1 n
wYZ dy = - == v hn o \>
n 2%n { B%n}

-1

+1 aY
+ { <: j> + k wY } dy
-y oy

But from (A.3) it is seen that the integrand on the right-

+1

hand side is identically zero. Hence, noting that h =1

at both walls, one obtains

+1 +a
oY oY
v2 &5 = 1 | d n , n
:[ Win dy = - 2xn [Yn 5§<:5Kn> - Yn RnJ_l (A-7)

Thus, combining (A.4), (A.6), and (A.7)
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e + 1 ~
" _ o1
| [9 £a¥n = %£aY¥ n}

c=-r<[nay< > ]ﬂ

n
-1

~

Note that this equation applies for both laminar and

turbulent flow.

(A.8)

Now the appropriate expressions for each of the four

fundamental cases will be set forth.
Case One

Here the boundary conditions are

Yn(—l) =0
Yn(l) =0
so
no A, BYn BYn
w0 () e ()
y:l y‘.—"_l
Case Two
Here the boundary conditions are
Yﬁ(—l) =0
Yﬁ(l) =.O
so
o o1 . Y (1) S
n 2\ Y Y
SRR (5 T N
y
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Case Three

Here the boundary conditions are

Yﬂ(—l) = 0
Yn(l) =0
so
n A, BYn 3 BYn
$ —
Yn(l)<3§xg> + ¥, (-1) 35 oA )
n/=.. Y n/—_
y=2 Yy=-1
Case Four
Here the boundary conditions are
Yn(—l) =0
Yﬂ(l) = 0
so
o - 1 Y (1)
n an . aYn
Y (1) —-( > + v (-1) <§X;>_
=1 ' y=-1
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APPENDIX B

DETAiLS OF THE NUMERICAL CALCULATION
OF THE LAMINAR EIGENFUNCTIONS

The numerical integration technique employed is pre- -

sented in Milne®8

as Method XII for linear equations of sec-
ond order, and will not be repeated here. The interval from
y=-1 to y =4+1 was divided into 400 equal increments
for the integration. The initial value of the ki "guess"
was that obtained from the asymptotic solution of Section
ITT.G.3

After each integration across the interval from y = -1

to y = +1, the eigenfunction was normalized by calculation

(Simpson's rule) and application of the factor
P
- X

2

[0 - ) (o o]

-1

The next trial %i was then computed by the Berry and

de Prima method and the integration was repeated. Since
closure is very rapid, the iterations were continued until
no change occurred in %i (the computer carries eight
significant figures).

To provide a check on the accuracy of the method the
calculated eigenvalues are compared with those reported by
other investigators in Table B.l. The majority of the
values compared were published during the preparation of
the present work.

After these calculations were completed Lundberg®” per-—
formed similar calculations for an annular passage using a
more sophisticated integration scheme (a predictor-corrector
method due to Hamming) and found that 250 increments pro-
vided sufficient accuracy.

The computer program is written in BALGOL language

and is presented below.
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COMMENT COMPUTATION OF EIGENFUNCTIONSs EIGENVALUES,
AND EIGENCONSTANTS FOR THE PARALLEL PLANES

NN

LAMINAR FLOW FUNDAMENTAL SOLUTIONSS

N

COMMENT THE LIST OF FORMAT STATEMENTSS

N

FORMAT HED1 (B48,*DETERMINATION OF LAMBDA*5W3)$

2  FORMAT HED2 (B47s%RESULTS OF FINAL ITERATIONsW3)$
2 FORMAT TRY (*YO=%sF14485%YPO=%3sF14e8s*YN=¥,F14e8,*YPN=#,
2 Flhe8s¥LL=%F1448s*#LLB=%sF14eBsW4) S

2 FORMAT ENDS (%CASE=%3sX2¢0s%YO=%sF14e8s*YPO=¥*sF14.85
2 *YN=%sF 1408, ¥YPN=%,F1448>W4)$

2  FORMAT TRY2 (%¥LAMBDA=%5,F14.85B55%LAMBDA SQUARED=%»
2 W4sB49 s *THE VALUES OF Y FOLLOW¥sW4)$

2 FORMAT TRY3 (6F20e8,W4)$

2 FORMAT TRY4 (*THE EIGENCONSTANT IS #sF1448,W&4)$

2 COMMENT THE LIST OF ARRAY DECLARATIONSS

2 ARRAY Y(500)sZ(500)sWF(500)5F(500)sG(500)sH(500)$
2 COMMENT SOME FURTHER DECLARATIONS AND

2 SETTING OF SOME INITIAL VALUESS

2 INPUT VALUES (LsYOsYPOsDEL,CASE)S

28+« WRITE ($SHED1)$

2 READ ($SVALUES)S

2 N=(2.0)/(DEL)S

2 v=0$

2 Xx=0%

2 LL=L.L$ LLB=0%

2 FOR I=(1s1sN)$ BEGIN
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2 WF(I)=(1e0=(((I)(DEL))=10)%2)%
2 H(I) =(DEL)(DEL)(WF(I)) ENDS

2NEWLeoFOR I=(1s1sN)$ BEGIN

2 G(I) =(LL)(H(INS
2 F(I) =1e04((G(I))/(12.0))% ENDS
2 COMMENT INTEGRATION OF THE DIFFERENTIAL EQUATIONS

2DEINT+«DYO=YPO.DELS

2 Y(1)=DYO+YO$

2 Z(1)=(F(1))(Y(1))$
2 20=Y0$%

2 DZI=Z2(1)-Z0$

2 FOR I=(2s1sN)}$ BEGIN

2 DDZI==(G(I-1))(Y(I-11)8%
2 DZ1 =DDZI+DZIS$

2 Z(1)=DZI+Z(1~1)%

2 Y(I)=(Z(1))/(F(I)) ENDS

2 YPN=(DZI+Z(N=-1))((G(N=1))/{(12.0+G(N=1))))/DELS

2 COMMENT CALCULATION OF THE NORMALIZATION

2 FACTOR BY SIMPSONS RULE INTEGRATIONS
2 P=0.0%

2 Q=0.08%

2 FOR I=(152sN-1)$

2 P=P+(WF (1)) ({Y(I))(Y(I)))$
2 FOR I=(252,N)$

2 Q=Q+ (WF (1)) ((Y(I))(Y(I)))$

2 S={2.0){4P+2Q)/{(3«0)N)S$
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FOR I=(1s1sN)%

Y{I)=Y(I)/5% YO=Y0/S$ YPO=YPO/S$
COMMENT TEST FOR CONVERGENCES
IF (LL NEQ LLB)$ GO TO BDPS
WRITE ($$HED2)$
GO QUITS
COMMENT THE BERRY AND DE PRIMA CALCULATION-

OF THE NEXT EIGENVALUE GUESSS

2BDPe.e« EITHER IF CASE EQL 1% BEGIN

2

2

2

2

LLB=LLS$
LL=LL=(Y(N))(YPN)$ ENDS
OTHERWISES$ BEGIN
LLB=LLS
LL=LL+(Y(N))(YPN) ENDS
QUTPUT TRY1(YOsYPOsY(N)sYPNsLLSLLB)S
WRITE ($3TRY1,TRY)S

GO NEWLS

2QUITesWRITE ($SICSENDS)S

2

2

QUTPUT IC (CASEsYOsYPOsY(N)sYPN)S

WRITE(SSLLIDSTRY2)S

OUTPUT LLID (SQRT(LL)sLL)S

OUTPUT ORDVAL (YOsFOR I=(1s1sN)SY(I1))S$

WRITE ($30RDVALSsTRY3)$

COMMENT CALCULATION OF THE EIGENCONSTANT
BY SIMPSONS RULE INTEGRATIONS

P=0+0%
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Q=0.08%
FOR I=(1s25N-1)%

P=P+(WF(I))(Y{I)}(0e5) (1) (DEL)S
FOR I=(2s2sN~2)%

Q=Q+(WF (1)) (Y(1))(0a5) (1) (DEL)S
NUM=(240) (4P+2Q)/((3.0)N)$
P=0.0$
Q=0408%

FOR I=(1s2,N-1)$

P=P+(WF(I))(Y(I})(Y(I))$
FOR I=(2s2sN=2)%

Q=Q+(WF(I)) (Y(I))IY(I))$
DEN=(2.0) (4P+2Q)/((3.0)N)$
C=NUM/DEN$
WRITE ($SCONST»TRY4)$
OUTPUT CONST (C)$
GO TO 8%

FINISHS
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_
‘ TABLE B.1
COMPARISON OF THE LAMINAR EIGENVALUES
REPORTED BY SEVERAL INVESTIGATORS

S

O WN KO

Case One

Prins, Mulder Cess & | -

Present Study & Schenk*® Shaffert* Brown
1.681597 1.6816 1.681595 1.6815953222
3.672294 3.672291
5.669861 5.6699 5.669857 5.6698573459
7.668812 7.668809
9.668245 9.6678 9.66824 9.6682424625

11.66790 11.66791
13.66766 13.6676614426

(Brown also
presents the
next six
even A\'s)

SNSoyutdbkh Wi

Case Two
Cess & Cess &
Present Study Shaffer?'?® Shaffert®
2.263144 2.263106
4.,287297 4.,287224
6.297808 6.29768
8.303899 8.30372
10.30796 10.3077
12.31090 12.3114
14.31315 14.3141

tn}

AU WNMO

Cases Three and Four

Present Study Schenk”°
0.9546740 0.9547
2.974334 2.9743
4.981082 4.9812
6.984656
8.986928

10.98853
12.98973
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APPENDIX C
DETAILS OF THE NUMERICAIL CALCULATION OF THE

TURBULENT FULLY DEVELOPED TEMPERATURE
PROFILES AND EIGENFUNCTIONS

1. The fully developed temperature profiles

The fully developed temperature profiles, discussed
in Section IV.B, were all calculated in essentially the
same manner, so.only that of case . one will be treated. here.

The equation requiring solution is given by (IV.B.25).

€ € ae
L+ 2 —Epr> fd) = o (c.1)
dy dy

The boundary conditions are

Gfd(—l) =0
Gfd(l) =1
The first step in the solution involved the calcula-
€ € -
tion of the '7% R 'E% , and u (for case two) profiles

for the Reynolds and Prandtl numbers of interest. This was
accomplished in a straightforward fashion employing equa-
tions (IV.B.7) and (IV.B.15), and the expressions in Section
IV.B.4. Calculations were carried out at y intervals of
0.002 and the results were stored on magnetic tape for
future use.

Next (C.1l) was integrated using a numerical scheme
developed by Mr. I. H. Wentzien and Professor J. G. Herriot
of the Stanford University Computation Center. This scheme
employs a fourth order Adams predictor-corrector method
(see Hildebrand®®) in the body of the interval and the
Runge-Kutta method for starting. It has the very attractive

feature of automatically increasing or decreasing the
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step-width size during the integration depending on the
relationship between the predictor-corrector difference and
prescribed relative and absolute error limits. When the
step-width size is decreased the Runge-Kutta method is used
again for starting. Since the method is actually set up to
solve a system of first order differential equations, (C.1l)

was reduced for computational purposes to

a(v % Pr> o

' —
defd _ &y v €M fd ©.2)

- € €

dy 1+ -2 _Eopyp

v €M .

a0

fa _ ot (C.3)
e £d

y

The integration proceeded as an initial value problem
. - ¢ = sq s s
with Sfd(—l) 0 and efd( 1) 1, and then, utilizing
the linearity of the equation, the results were scaled by
the factor required to make Gfd(l) = 1. They were stored

on magnetic tape for use in the eigenconstant calculations.

2. The eigenfunctions, eigenvalues, and eigenconstants

The same predictor-corrector numerical scheme was used
to integrate (IV.B.21). The equation was first reduced to

two first order equations,

€ €
o —d_—<—b4 -51—{- Pr> Y - xiﬁyn
"o &N (C.4)
- € €
dy 1 + .T/M_ _€_I'_I_ Pr
M
dYn
E—:— = Y.’(‘l (c.5)
Y
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A third equation,
dx®
S Y

— = gy2 (c.6)
dy

n

was integrated simultaneously with the above two so that
the normalization factor was obtained without a subsidiary
Simpson's rule integration.
| As in the laminar case, the Berry and de Prima method
was employed to converge on the correct eigenvalue. Having
done this, the eigenconstant was calculated from (IV.B.24).
The computer program used for the eigenfunction and

eigenvalue calculations is presented below.
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2COMMENT COMPUTATION OF EIGENFUNCTIONS AND EIGENVALUES FOR

2 THE PARALLEL PLANES TURBULENT FLOW FUNDAMENTAL

2 SOLUTIONS USING THE FOURTH ORDER ADAMS PREDICTOR-
2 CORRECTOR METHODs THE RUNGE-KUTTA METHOD FOR

2 STARTINGs AND ERROR CONTROLSS

2INTEGER 1sJsAAsBBsNsMsUHHsUNOSDOSS

2INTEGER KEY1sKEYZ2sKEY3sKEY4sKEY5,KEY6S

2BOOLEAN SKIPsKEEPERSZERTS

2ARRAY X(555)sL(555)sF(525)sXP(5),
2 E(5!sB(510)sD(510)sFB(510)$%

2FORMAT MESSAGE (#IN THE FOLLOWING CALCULATIONS H=#,
2 X10e8sW2)%
2FORMAT FRMT1(B2s510.8sW4)$
2FORMAT FRMT2(B10»6F16+85W0)$
2FORMAT IDL(*CASE=%3X2405B5s*RE=%3X6e05sB5s*PR=%3X3,25
2 B5s*LL=%sF1448,B5s%LAMBDA=%*5F14485W4)$
2FORMAT GAB2(#Y1=%sF1448sB5s*YP1=%sF1448sB5s*Y2=%,
2 F14e8sB5s%YP2=%sF1448sW4)$
2FORMAT GAB4(*THE PREVIOUS VALUE OF LAMBDA SQUARED WAS ¥,
2 F14.8sB5s% AND LAMBDA WAS *sF14.85W4)$

2FORMAT GAB5 (B1l0OsW1)$%

2FORMAT DONE(B47s*RESULTS OF FINAL ITERATION#*sW3)$%

2FORMAT GOMO(B50s*INTERMEDIATE RESULTS%*sW3)$

20UTPUT
20UTPUT

20UTPUT

NEWH(H) $
ORD(T)®

RESULTS

(FOR I=(1512EQ)3X(IsJ))%
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20UTPUT ID(CNUsRESPRsLLsLLL)S
20UTPUT GAB(YZ+NORsYPZ«NOR>YMNsYPN)$

20UTPUT GAB3(LLOLDsLLLOLD)S
2COMMENT FUNCTIONS FOR FORWARDsCENTRAL s
2 AND BACKWARD DIFFERENCE INTERPOLATIONS

2FUNCTION FINT(CCsDDsEEsFF»GGsHH»ITsJJsKK)=CCH+

2 HH(DD-CC)+045 (HH) (11) (EE-2.0DD+CC )+

2 (1¢0/600)HHeIIeJJ(FF=3,0EE+3.0DD~CC)+
2 (1e0/2440)HHe I eJJeKK (GG—4 o OFF+6 o 0EE~
2 4.,0DD+CC)$

'ZFUNCTION CINT(CCsDDsEESFF9GGsHH) =CC+0«5HH(DD~FF)

2 +0e5HHeHH(DD=2e OCCH+FF ) +HH{HHeHH~140)/12¢0)
2 (EE~2+0DD+24 0FF=GG)+(HHoHH{HHeHH=1e0)/2440)
2 (EE=4+0DD+6e0CC-4e0FF+GG) 3

2FUNCTION BINT(CC3sDDsEEsFFsGGsHH» I1sJJsKK)=CCH

2 H(CC~DD)+0+5HHe 11 (CC—240DD+EE )+

2 (HHe114JJ/640) (CC=3+0(DD-EE)—FF)+

2 (HHeI1eJJeKK/2440) (CC=4 40 (DD+FF)+6+0EE
2 +GG) S

2COMMENT SUBROUTINE FOR COMPUTING DERIVATIVES
2 FOR EIGENVALUE DETERMINATIONS
2SUBROUTINE FUNCTS BEGIN

2 EITHER IF(T LSS 1.0)% BEGIN

2 S=FIX(T/DEL)S
2 U=T/DELS
2 EITHER IF (T EQL 0)SBEGIN
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F(1sM)=040%
F(2sM)=YPZ$

F(3sM)=0.0 ENDS$

IF(U EQL FLOAT(S))$ BEGIN

F(LlsM)=(=X(1sM)eD(S)~LL(FB(S))(X(2sM)))/
(1.0+B(S5))53

F(2sM)=X(1,M)$

F(3sM)=((FB(5))(X(2sM))) (X(2sM)) ENDS

IF (T LSS DEL)S$ BEGIN

F(LsM)=((=X{1sM))(FINT(0s05D(1)sD(2)5sD(3)>
UsU=1403U=2e03U=340))~LL(X(2sM))
FINT(ZEROsFB(1)sFB(2)sFB(3)sFB(4)
UsU-1405U=2e05U-340)))/(1e0+FINT{
ZEROsB(1)9B(2)sB(3)sB(4)sUsU=1405
U=2.0sU-3.0))%

F(2sM)=X(1sM)$

F(3sM)=(FINT(ZEROsFB(1)sFB(2)sFB(3)sFB(4)>
UsU=1e05U=2e05U=3.0) ) X(2sM)eX(25M) END$

IF (T LSS 3.0DEL)SBEGIN

U=(T/DEL-S)$%

F(1sM)=((=X(1sM))(FINT(D(S)sD(S+1)sD(S+2) s
D(S+3) 5D (S+4) sUsU=15U~25U-3) )=LL
(X(2sM)) (FINT(FB(S)sFB(S+1)sFB(S+2)»
FB(S+3) sFB(S+4) sUsU~1sU=25U~3)))/
(140+FINT(B(S)sB(S+1)sB(S5+2)sB(S+3)5

B(S+4) sUsU=15U-2,U-3))8%
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F(2sM)=X(1sM)$
F(3sM)=(FINT(FB(S)sFB(S+1)sFB(S+2)sFB(S+3) s
FB(S+4) sUsU=15U=25U=3))eX(25M)eX(25M) ENDS
OTHERWISES BEGIN
U=(10/DEL) (T-S<DEL)S
FU1sM)=((=X(1sM)) (CINT(D(S)sD(S+1)sD(S+2) s
D(S=1)sD(S=2)sU))=LL(X(2sM)) (CINT(
FB(S)sFB(S+1) sFB(S+2) sFB(S=1) sFB(S=2) »
U)))/(1e0+CINT(B(S)sB(S+1)sB(S+2)sB(S—1)
B(S~2)sU))$
F(2sM)=X(1sM)$
F(3,M)=(CINT(FB(S)sFB(S+1)sFB(S+2)sFB(S-1)sFB
(S=2)sU))eX(25M) «X(25M) ENDS ENDS
OTHERWISESBEGIN
S=N-FIX(T/DEL)S$
U=(T/DEL)—FLOAT(FIX(T/DEL))$
EITHER IF (T EQL 2.0)3% BEGIN
F(1sM)=0403%
F(2sM)=X(1sM)$
F(3,M)=0.05 ENDS
OR IF (T/DEL EQL FLOAT(FIX(T/DEL)))$ BEGIN
F(LsM)=(X(1sM)eD(S)~LL.FB(S)eX(2sM))/
(1.0+B(5))8
F(2sM)=X(1sM) S
F(3sM)=FB(S)eX(2sM)eX(25M) ENDS

OR IF (T LSS (FINAL-3.0DEL))$ BEGIN

226



2 F(lsM)=(X(1sM) e (CINTID(S)sD(S=1)sD(S=2) 4

2 D(S+1)sD(S+2)5U) ) =LL(X(2sM) ) (CINT

2 (FB(S) »FB(S=1)sFB(S=2)sFB(S+1) >

2 FB(S+2)sU)))/(1e0+CINT(B(S)»B(S<1) s
2 B(S=2)sB(S+1)»B(S+2)5U))S$

2 F(2sM)=X(1,M)$

2 F(3sM)=(CINT(FB(S)sFB(S~1)sFB(S~2)>FB(S+1)»
2 FB(S+2)5U)) e X(2sM) eX(25M) ENDS

2 OTHERWISES BEGIN

2 F(1sM)=((X(L1sM)) (BINT(D(S)sD(S+1)sD(S+2) s

2 D(S+3) sD(S+4) sUsU+1sU+25U+3) ) =LL

2 X(2sM) e (BINT(FB(S) sFB(S+1)sFB(S5+2) s
2 FB(S+3)sFB(S+4) sUsU+1sU+25U+3)) )/

2 (1.0+BINT(B(S)sB(S+1)sB(S+2)sB(S+3)5
2 B(S+4) sUsU+1sU+25U+3) )8

2 F(2sM)=X(1sM)$

2 F(3,M)=(BINT(FB(S)sFB(S+1)sFB(S+2)sFB(S+3),
2 FBUS+4) sUsUt1 sU+25U+3) ) eX(25M) e X (2 sM)
2 ENDS END$S RETURN ENDS$

2UHH=900%

2UNO=1%

2D05=2%

2ZERT=0%

20UT « «READ(SBSGUESSIN) $

2

2

READ ( SSNEWVAL) $

INPUT GUESSIN(YZsYPZsLLL SKEYLsCNUSZERLIT)S
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INPUT NEWVAL(EXPOREL sEXPOABS)$

2 READ( $SCASENU) $
2 INPUT CASENU(SKIP,EQ)S
2N=510%

ZREWIND(UHH) %

2YPY ¢« « FINDM(UHH»KEY1)S

2 READM(UHHSZERTSFLIST) S

2 READM(UHHSZERTSDLIST) $

2 READM(UHHSZERTSBLIST) S

2 MOVEM (UHH$DOS) $

2 READM(UHH$ZERTSREPR ) $

2 INPUT FLIST(KEY1sFOR I=(151,N)$FB(I))$
2 INPUT DLIST(KEY2,FOR I=(151,N)$D(1))$
2 INPUT BLIST(KEY3,FOR I=(1,1,N)$B(I))$
2 INPUT REPR (KEY6,REsPRsFR)S

2N=1000%

ZCOMMENT SET UP INITIAL VALUESS

2

2

LL=LLL+LLLS

KEEPER=SKIP3

2NEWL 0o X(141)=YPZ$

2

X(2s1)=YLS
X(3s1)=0.0%
SKIP=KEEPERS
N=1000%
TEMP=0%

T=0%
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2 CODE=0%

2 ZERO=0%

2 DEL=(2.0/N)3%
2 INITIAL=0%

2 FINAL=2.0%

2 DEL=(2.0/N) %
2 H=DEL%

2 COUNT=20%

2COMMENT BEGIN PROGRAM
2 SET UP ACCURACY TESTSS

2 IF SKIP$ BEGIN

2 AA=2%
2 BB=4%
2 GO TO 2222 ENDS

2 RELTEST=14e2¢(10.0%EXPOREL) S

2 ABSTEST=14+2(10.0*¥EXPOABS) S

2 FACTOR=10.0% (EXPOREL~EXPOABS) %

2 LB=14e2(10.0%(EXPOREL-243))%

2 H=H+H$

2COMMENT RUNGE KUTTA STARTING METHODS
21111 eeAA=2%

2 BB=2%

22222+ FOR J=(AA»1sBB)$ BEGIN

2 M=J=1%
2 ENTER FUNCTS
2 FOR I=(1s19EQ)% BEGIN

229



L(Is1)=HeF(IsM)$
X{IsJ)=X(IsM)+0.5L(I,1) ENDS
T=T+0+5HS$
M=J$
ENTER FUNCTS

FOR I=(151sEQ)$ BEGIN
L(Is2)=HeF(IsJ)%
X(IsJ)=X(IsJ=1)+0e5L(152) ENDS
ENTER FUNCTS

FOR I=(1s15EQ)$ BEGIN
L(Is3)=HeF(IsJ)$
X(IsJ)=X(IsJ=1)+L(Is3) ENDS
T=T—0+5H+H$
ENTER FUNCTS$

FOR I=(1s1sEQ)$ BEGIN
L(Is4)=HaF(I5sJ)$
X(IsJ)=X(1sJ=1)+0e1666666T7(L(I151)+2.0

(L{Is2)+L(I53))+L(Is4)) ENDSENDS

IF BB EQL 2% BEGIN

23333e¢FOR 1I=(1s1-EQ)S3

é

XP{I})=X(1-2)%

2COMMENT XP(I)=DOUBLE INTERVAL RESULT TO BE

2

USED IN ERROR ANALYSISS
T=T-HS$
H=0«5HS%

WRITE ($SNEWHsMESSAGE)$
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2 BB=3%

2 GO TO 2222 ENDS$
2 IF BB EQL 3% BEGIN
2 J=3%

2COMMENT IS ACCURACY CRITERION METS

244444 eFOR I=(1515EQ)% BEGIN

2 E(I)=ABS{XP(I)=X{I»J))%

2 EITHER IF E(I) LSS ABS(X{(I»J))«RELTESTS
2 E(I)=E(I)/ABS(X(IsJ))%
2 OR IF E(I) LSS ABSTESTS

2 E(I)=E(1)«FACTORS

2 OTHERWISESBEGIN

2 T=T-H$

2 IF J EQL 5% BEGIN

2 FOR I=(1s1-EQ)%

2 X(Is1)=X{I54)%

2 GO TO 1111 END$

2 GO TO 3333 END$ ENDS

2 IF J EQL 5%

2 GO TO 6666%

2 AA=48%

2 BB=4%

2 GO TO 2222% ENDS$

2COMMENT SHOULD ANY OF THE STARTING VALUES
2 BE PRINTED OUTS

2 T=T«H-H-H$
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2 IF CODE EQL 1%

2 T=FINAL-HS$

2 FOR J=(2+154)% BEGIN
2 T=T+HS

2 TEMP=TEMP+1%

29999« IF(T GEQ FINAL)$ BEGIN

2 IF CODE EGQL 1%
2 GO ABLES
2 GO SPEC$ ENDS

2ABLE..IF T GEQ FINALS

2 GO SIMP$

2 IF TEMP EQL COUNTS$ BEGIN
2 WRITE (3$30RDsFRMT1)$

2 WRITE ($BRESULTSsFRMT2)$%
2 TEMP=0% END3® ENDS

25555..IF T GEQ FINALS
2 GO SIMPS

2COMMENT BEGIN ADAMS METHODS

2 M=43%

2 ENTER FUNCTS$

2 FOR I=(1s1,EQ)3$ BEGIN

2 XPUI)=X{134)40e04166666THe(5540F(1s4)~
2 59e0F(13)+37e0F(152)~9.0F(1I511)%
2 X(Is5)=XP(I) ENDS$

2 T=T+HS$

2 M=5%
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2

ENTER FUNCTS
FOR I=(1s1-EQ)%

X{(I95)=X(I34)+0e04166666THe(9e0F(T1s5)+
19.0F(Is4)=540F(193)+F(152})9
IF SKIPS
GO TO 6666%
J=58%

GO TO 44443

266664+FOR J=(2s1+5)%

2

2

FOR I=(11,EQ)% BEGIN
FOIsJd=1)=F(1+J)%
X(IsJ=11=X(1sJ) ENDS

TEMP=TEMP+1$%

IF T GEQ FINALS BEGIN
"IF CODE EQL 1%

GO BAKERS

GO SPECS ENDS

2BAKER««IF T GE@ FINALS

2

2

GO SIMPS

IF TEMP EQL COUNTS$ BEGIN
J=4%
WRITE ($SORDsFRMT1)$
WRITE ($SRESULTSsFRMT2)$%
TEMP=0SENDS

IF SKIPS

GO TO 5555%
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2COMMENT TEST WHETHER INTERVAL CAN

2

2

2

2

BE DOUBLEDS
FOR I=(1s1+EQ)$% BEGIN
IF (E(I) GTR LB)S
GO TO 5555% ENDS$
IF T+H+H GEQ FINALS
GO TO 5555%
FOR I=(1515EQ)S$
X{Is1)=1(1,4)%
H=H+H+H+HS

GO TO 1111%

2SPECe.«IF T EQL FINALS

GO SIMPS

T=T-H$

FOR I=(1s1,EQ)%

X{Is1)=X(I,J~-1)8%

H=FINAL-TS$
KEEPER=SKIP%
AA=2%

BB=43%
SKIP=1%
CODE=1.0%

GO 2222%

25IMPee YMN=X(25J)$

2

2

YPN=X{1sJ)$%

NOR=(10/SQRT(X(35J)))%

234



2

2

YMN=YMN.NORS

YPN=YPN.NORS

LLOLD=LLS

LLLOLD=LLLS

EITHER IF CNU EQL 1%
LL=LL-YMN.YPN$

OTHERWISES
LE=LL+YMN.YPNS

LLL=SQRT(LL)S

EITHER IF LL LSS 10.0%
ZERLIM=ZERLIT.(0.0005)%

OTHERWISES
ZERLIM=ZERLIT«(0.005)%

IF ABS(LLOLD-LL) LEQ ZERLIMS
GO COMPLETES

GO REDOS

2COMPLETE««WRITE (33%DONE)S

2

2

2

WRITE(S$S$SID,IDL)S
WRITE($$GAB»GAB2)S
WRITE($3GAB3,GAB4)S
FOR I=(1s1s5)% BEGIN
FOR 1I=(1+s1+5)%
X(IsI1)=0.0 ENDS®
WRITE ($$GAB5)%

GO OUTS

2REDO«WRITE ($3GOMO)S%
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N NN

WRITE ($3ID,IDL)S
WRITE ($3GABsGAB2)3

WRITE ($3GAB3,GAB4)S%
WRITE ($3GAB5)%
FOR I=(151+5)%BEGIN
FOR II=(151+5)%
X(IsI1)=040 ENDS
GO NEWLS

FINISHS

236



APPENDIX D

EXAMPLE OF THE USE OF THE FUNDAMENTAIL SOLUTIONS

It is convenient to use the graphs of the fundamental
solutions, Figures III.C.1-4 and IV.C.l1l-4, for rapid calcu-
lations involving superposition of relatively simple bound-
ary conditions to approximate more complicated ones. For
illustration, a specific example will be treated in this
appendix.

Consider a problem in which the wall temperatures vary
axially in the manner shown in Figure G.l. The fluid is
air which enters at atmospheric .pressure with a fully
established velocity profile and a uniform temperature of
98.1° F. The inlet Reynolds number is 40,400, the plate
spacing is 0.5 inches, and X = 0.20. 1It is desired to
determine the heat flux at each wall as a function of Xx.

The pertinent equations are (II.D.23) and (II.D.24);

these are reproduced here for convenience.

£=x
a (%) -='5]i- f o{1) x - e>] at, (&)
t=o
£=x
[ el @ - o] e, @ (0.1)
£=0
-
OIS - f L@i(;’ (% - &)] at, (&)
=0
==
+f [cb.ﬁ) (x - &)] at_. (€) (D.2)
£=o
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Recall that the integrals are to be evaluated in the

Stieltjes sense. Thus, approximating o ~and toi by

i
the steps shown in Figure G.l, (D.l) and (D.2) become

h all steps
before x

+‘3]3‘; Z [@é;) (% - a)J st (€) (D.3)

all steps
before x

" - kK ( ) ~ :
Wi " > ERCE RIS
all steps
before x

+ gi- jg: [?éé)(i - €)] ot (E) (D.4)
all steps

before x

The wall temperature steps employed are as follows.

X 5two 6twi

| (°F) (°F)
-2.0x107* -0.5 -0.75
-1.5x107% 0.75 0.5
-1.0x107% 2.0 1.5
-0.5x10"¢ 6.0 3.75
0 11.75 6.75
0.5x107¢ 0.75 0.25

The values of ¢éi)(£) and ¢éé)(i) at the Reynolds num-
ber of interest are obtained by crossplotting them against

Re with x as a parameter using Figure IV.C.l, and then
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plotting against X at the proper Re. Recall that
o{t) = 9f1) ang of) = ol1).

As an example of the calculation procedure, consider
the position at the outer (upper) plate, X = 5x10"*. One

obtains from (D.3) the following result.

g = 0.20 [(80.0)(—0.5) + (82.0) (0.75) + (83.5)(2.0)
+ (86.0)(6.0) + (88.5) (11.75) + (91.5)(0.75@
+ 0.20 [(-0.38)(—0.75) + (-0.24) (0.5) + (-o.125)(1.5ﬂ

Thus

q‘;o = 362.5 _Btu

hr-£ft®

Proceeding in the above manner, the heat fluxes are
calculated for several x values at each plate. The

results are tabulated below, and plotted on Figure D.1.

X q&o q&i
(Btu/hr-ft2) (Btu/hr-£ft?%)

-1.5x10™* -11.5 -17.3
-1.0x10™% 6.5 -4.63
-0.5x107% 52.1 30.3

0 186.5 114.3
0.5x10™% 408.3 261.7
1.0x107¢ 432.8 250.3
1.5x107¢ 406.4 235.0
2.0x107* 388.0 224.5
2.5x107* 374.2 216.5
3.0x107¢ 362.5 209.8
3.5x107¢ 352.4 203.7
4.0x10™* 343.2 198.1

239



»q&o q&i

Kl

(Btu/hr-£ft2) (Btu/hr-ft2)
4.5x10"% 337.0 193.5
5.0x1074 305.1 188.6
5.5x10" ¢ 323.1 184.4
6.0x10™% 317.0 180.2
6.5x107* 311.0 176.4
7.0x10"* 304.2 172.0
7.5x107¢ 299.1 170.5

Y

Referring to Figure V.B.3, it can be seen that the example
given here is the heat flux prediction for that particular

test run.
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Figure D.l. Example of the Use of the Fundamental Solutions
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APPENDIX E

ESTIMATE OF THE RANGE OF VALIDITY OF THE
TURBULENT SMALL X SOLUTIONS

As can be seen from Figures IV.C.1l, 2, 3, and 4, there
is a large gap between the calculated fundamental solutions
and the small X asymptotes. Thus the range of validity
of the small X solutions is not apparent from the figures,
as it is in the laminar case. For this reason it is desir-
able to use the expressions developed in Section IV.E to
obtain estimates of the maximum value of x for which
these solutions are valid.

Recall that the small X solutions were predicated on
the fact that the temperature profile had not yet penetrated
the turbulent core; that is, it was confined to the laminar
sublayer. Thus the limiting X value sought can be ob-
tained by using the temperature relations of Section IV.E
to calculate the value of X at which the sublayer edge
temperature has risen to, say, 1 percent of the value at
the wall.

Taking the laminar sublayer edge to occur at y+ =5
(from Figure IV.B.3 it is seen that %% = 0.1 here),
(IV.B.8) indicates that

n === T (E.1)

defines the sublayer thickness. Thus, the similarity solu-
tions of Section IV.E will be used to determine the limiting
values of the variable £, and this, combined with (E.1)

will lead to Xmax'

Cases one and three

Here the ratio of fluid to wall temperature is given
by (IV.E.15) and (IV.E.6).
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f =a

6 1153
5= = <’ > do + 1 (E.2)
F=o T ( Iy \1152 f

Setting the temperature ratio equal to 0.01, one obtains

’;— € _ Re f o3
3 Re f 1152 _
- (_l_> <1152> f e do 0.99 (E.3)
3 [o]

Changing variables, let

Q

0t Bt ot =0
Then (E.3) becomes
Re f gs
1152
_ 2
(11> e®w % aw=0.99 (E.5)
I"' —
3 o)
From Pearson®?
1152 o
1 S ) _ Re f ,s 2
F(l>f e w am I <\/3 1155 £<, - 3> (E.6)
3 °

where I 1is an incomplete gamma function. Hence

(\/—5%&3, --§->= 0.99 (E.7)

Pearson tabulates the incomplete gamma function, and from

his book and (E.7) one obtains

Re f f
1152
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Then, from (IV.E.8) and (E.1l)

3
3 = ;

1152 Re2VE ReZVf

The maximum value of x for which the small X solu-
tions are valid for cases one and three are given in the
following table.

Bg xmax
20,000 2.06x1077
30,000 9.84x10" 8
50,000 3.85%x10" &

Referring to Figures IV.C.l1l and IV.C.3, it can be seen that
the fundamental solutions do not merge with the small X
asymptotes in the Xx range plotted.

It is of interest to note that had the 1 percent
restriction imposed on the temperature ratio been relaxed

to 10 percent, the values tabulated above would be

Xmax
increased by only a factor of 2.74.

Cases two and four

Here the ratio of fluid to wall temperature'is given
by (IV.E.34) and (IV.E.35).

F(’ 2y 1, 1 . 1152
1iss 7) T
o (Re_£)’ F(:g)
1152 3

_Re £ g2 -
Re 1152
+ 384 € o e dé> (E.10)
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Settihg the temperature ratio equal to 0.0l and changing

variables to ® (defined by (E.4)), one obtains

_Re £ £ _ 1
o 1152 (1152 f 0T g

Now let

Then

1
ET r(%—) a® = 0.01

[0]

|

Q
+
Q(D'I—'
()

|

&
S

|
o+

o
From Pearson
a
- |
~® 3 = 2 3 1
[e o ° o r<3>1(\/:a,—3>
o}

So (E.13) becomes

1 1
—q ) 2 3 1 2\ 3 _
e "+ a I’<§->I<\/;OL,—§—>—P<§>OL = 0.01

Using Pearson's tables, it is found that

o = 2.29
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Then from (IV.E.25), (E.l1), and (E.12)

8
< 2 :
5 =532 1 = 8.60 (E.16)

2.29 1152 Rez'VET Reg\/f

The maximum value of X for which the small X solu-

tions are valid for cases two and four are given in the
following table.

Re Xmax
20,000 2.48%x1077
30,000 1.19x1077
50,000 4.65x10°8

It can be seen that the case two and four small X solu-
tions are valid at somewhat greater values of x than are
the case one and three solutions; however, this region of
validity is still off the scale of Figures Iv.C.2 and
Iv.c.4.
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APPENDIX F

EXPERIMENTAL UNCERTAINTY

The experimental uncertainty in the wall heat flux,
q&, and the longitudinal coordinate, X, can be estimated
using the method described by Kline and McClintock,®% and

basing the estimates on odds of 20 to 1.

Uncertainty in X

Recall the definition of x.

. S
X = D Repr (F.1)
h
The uncertainty in Dh is +1 percent. The longitudinal
positions of the heated cells are known within + ;L-inch;

— 32
thus x has an uncertainty of +6 percent at the first

heated cell, +0.69 percent at the fifth, and a negligible
uncertainty at the downstream end of the test section. The
Prandtl number uncertainty is about +2.5 percent. The

Reynolds number is evaluated from
Re = —— (F.2)

where Ac is the duct cross sectional area. The uncer-
tainty of the air mass flow rate, m, is +1.2 percent,

and those of the flow cross sectional area and air viscosity
are +2 percent and +1.5 percent, respectively. Thus the
probable uncertainty in Reynolds number is +2.8 percent,

and the uncertainty in X Dbecomes +7.1 percent at the

first heated cell, diminishing to +3.9 percent down the

passage.
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Uncertainty in q.

From the repeatability of the heat meter calibrations
and the accuracy of the calibrating ammeter and voltmeters,
it is felt that the heat meter sensitivities are known with
a probable uncertainty of +5 percent. Considering the
accuracy of the VIVM used for monitoring the heat meters
during the tests, and the ability of the operator to "aver-
age out" slight needle fluctuations, the final uncertainty
in q¢ 1is 7 percent.
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APPENDIX G

SOME USEFUL CONSTANTS

There are listed here for convenience certain constants

that appear in several places in the body of this work.

P<-31—> = 2.678939
r(%)

r(%} = 0.8929796

1.354119

N
i

2.519842

W
i

1.200937

o |+

37 = 1.732051

w
o)~
]

3.602811
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